[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 83))

The quality of input data has an important role in the performance of a biometric system. Images such as fingerprint and face captured under non-ideal conditions may require additional preprocessing. This chapter presents intelligent SVM techniques for quality assessment and enhancement. The proposed quality assessment algorithm associates the quantitative quality score of the image that has a specific type of irregularity such as noise, blur, and illumination. This enables the application of the most appropriate quality enhancement algorithm on the non-ideal image. We further propose a SVM quality enhancement algorithm which simultaneously applies selected enhancement algorithms to the original image and selects the best quality regions from the global enhanced image. These selected regions are used to generate single high quality image. The performance of the proposed algorithms is validated by considering face biometrics as the case study. Results show that the proposed algorithms improve the verification accuracy of face recognition by around 10–17%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 103.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Wayman J., Jain A. K., Maltoni D., Maio D. (2005) Biometric systems: technology, design and performance evaluation, Springer, Berlin Heidelberg New York.

    Google Scholar 

  2. Jain A. K., Bolle R., Pankanti S. (Eds.) (1999) Biometrics: personal identification in networked society, Kluwer Academic, Dordretch.

    Google Scholar 

  3. Tabassi E., Wilson C., Watson C. (2004) Fingerprint image quality. In: NIST Research Report NISTIR7151.

    Google Scholar 

  4. Hicklin A., Khanna R. (2006) The role of data quality in biometric systems. Technical Report, Mitretek Systems.

    Google Scholar 

  5. Vapnik V. N. (1995) The nature of statistical learning theory. Springer, Berlin Heidelberg New York.

    MATH  Google Scholar 

  6. Bolle R. M., Pankanti S. U., Yao Y. S. (1999) System and methods for deter-mining the quality of fingerprint images. In: United States Patent Number US5963656.

    Google Scholar 

  7. Shen L., Kot A., Koo W. (2001) Quality measures of fingerprint images. In: Proceedings of Audio- and Video-based Biometric Person Authentication 266-271.

    Google Scholar 

  8. Agrawal M. (2006) Multi-impression enhancement of fingerprint images. Master Thesis. West Virginia University.

    Google Scholar 

  9. Ratha N., Bolle R. (1999) Fingerprint image quality estimation. In: IBM computer science research report RC21622.

    Google Scholar 

  10. Lim E., Jiang X., Yau W. (2002) Fingerprint quality and validity analysis. In: Proceedings of International Conference on Image Processing 1:469-472.

    Google Scholar 

  11. Hong L., Wan Y., Jain A. (1998) Fingerprint image enhancement: algorithms and performance evaluation. In: IEEE Transactions on Pattern Analysis and Machine Intelligence 20(8):777-789.

    Google Scholar 

  12. Chen Y., Dass S., Jain A. (2005) Fingerprint quality indices for predicting authentication performance. In: Proceedings of Audio- and Video-based Biometric Person Authentication 160-170.

    Google Scholar 

  13. Aguilar J. F., Chen Y., Garcia J. O., Jain A. (2006) Incorporating image quality in multi-algorithm fingerprint verification. In: Proceedings of International Conference on Biometrics 213-220.

    Google Scholar 

  14. O’Gormann L., Nickerson J. V. (1989) An approach to fingerprint filter design. In: Pattern Recognition, 22(1):29-38.

    Google Scholar 

  15. Greenberg S., Aladjem M., Kogan D., Dimitrov I. (2000) Fingerprint image enhancement using filtering techniques. In: International Conference on Pattern Recognition 3:326-329.

    Google Scholar 

  16. Chikkerur S., Cartwright A., Govindaraju V. (2005) Fingerprint Image Enhancement Using STFT Analysis, International Workshop on Pattern Recog-nition for Crime Prevention, Security and Surveillance, Lecture Notes in Computer Science, Springer Berlin/Heidelberg, Volume 3687/2005, Pages 20-29.

    Google Scholar 

  17. Daugman J. (2001) Statistical richness of visual phase information: update on recognizing persons by iris patterns. In: International Journal on Computer Vision 45:25-38.

    Google Scholar 

  18. Ma L., Tan T., Wang Y., Zhang D. (2003) Personal identification based on iris texture analysis. In: IEEE Transactions on Pattern Analysis and Machine Intelligence 25(12):1519-1533.

    Google Scholar 

  19. Chen Y., Dass S., Jain A. (2006) Localized iris image quality using 2-D wavelets. In: Proceedings of International Conference on Biometrics 373-381.

    Google Scholar 

  20. Zhang G., Salganicoff M. (1999) Method of measuring the focus of close-up image of eyes. In: United States Patent Number 5953440.

    Google Scholar 

  21. Kalka N. D., Zuo J., Dorairaj V., Schmid N. A., Cukic B. (2006). Image Quality Assessment for Iris Biometric. In: Proceedings of SPIE Conference on Biometric Technology for Human Identification III, 6202:61020D-1-62020D-11.

    Google Scholar 

  22. Belhumeur P. N., Kriegman D. J. (1998) What is the space of images of an object under all possible lighting conditions? In: International Journal on Computer Vision 28(3):245-260.

    Google Scholar 

  23. Basri R., Jacobs D. (2000) Lambertian reflectance and linear subspaces. NEC Research Institute Technical Report 2000-172R.

    Google Scholar 

  24. Ramamoorthi R., Hanrahan P. (2001) On the relationship between radiance and irradiance: determining the illumination from images of a convex Lambertian object. In: Journal of Optical Society of America 18(10):2448-2459.

    Google Scholar 

  25. Zhang L., Samaras D. (2003) Face recognition under variable lighting using harmonic image exemplars. In: Proceedings of International Conference on Computer Vision on Pattern Recognition 1:19-25.

    Google Scholar 

  26. Shan S., Gao W., Cao B., Zhao D. (2003) Illumination normalization for robust face recognition against varying lighting conditions. In: Proceedings of International Workshop on Analysis and Modeling of Faces and Gestures 157-164.

    Google Scholar 

  27. Shashua A., Riklin-Raviv T. (2001) The quotient image: class-based re-rendering and recognition with varying illuminations. In: IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(2):129-139.

    Google Scholar 

  28. Chen T., Yin W., Sean X. Z., Comaniciu D., Huang T. S. (2006) Total variation models for variable lighting face recognition. In: IEEE Transactions on Pattern Analysis and Machine Intelligence 28(9):1519-1524.

    Google Scholar 

  29. Fronthaler H., Kollreider K., Bigun J.(2006) Automatic image quality assessment with application in biometrics. In: Computer Vision and Pattern Recognition Workshop 30-30.

    Google Scholar 

  30. Levine M. D., Bhattacharya J. (2005) Detecting and removing specularities in facial images. In: Computer Vision and Image Understanding 100:330-356.

    Google Scholar 

  31. Gross R., Brajovic V. (2003) An image pre-processing algorithm for illumination invariant face recognition. In: Proceedings of Audio- and Video Based Biometric Person Authentication 10-18.

    Google Scholar 

  32. King S., Tian G. Y., Taylor D., Ward S. (2003) Cross-channel histogram equal-isation for colour face recognition. In: Proceedings of International Conference on Audio- and Video-Based Biometric Person Authentication 454-461.

    Google Scholar 

  33. Kela N., Rattani A., Gupta P. (2006) Illumination invariant elastic bunch graph matching for efficient face recognition. In: Proceedings of International Conference on Computer Vision and Pattern Recognition Workshop 42-42.

    Google Scholar 

  34. Chen P.-H., Lin C.-J., Schölkopf B. (2005) A tutorial on nu-support vector machines. In: Applied Stochastic Models in Business and Industry 21:111-136.

    Google Scholar 

  35. Chew H. G., Lim C. C., R. E. Bogner. (2004) An implementation of training dual-nu support vector machines. In: Qi, Teo, and Yang, (Eds.) Optimization and Control with Applications, Kluwer, Dordretch.

    Google Scholar 

  36. Daubechies I. (1992) Ten lectures on wavelets. In: Society for Industrial and Applied Mathematics.

    Google Scholar 

  37. Rioul O., Vetterli M. (1991) Wavelets and signal processing. In: IEEE Signal Processing Magazine 8(4):14-38.

    Google Scholar 

  38. Hua L., Fowler J. E. (2001) RDWT and image watermarking. In: Technical Report MSSU-COE-ERC-01-18, Engineering Research Center, Mississippi State University.

    Google Scholar 

  39. Fowler J. E. (2005) The redundant discrete wavelet transform and additive noise. In: IEEE Signal Processing Letters 12(9):629-632.

    Google Scholar 

  40. Cao J.-G., Fowler J. E., Younan N. H. (2001) An image-adaptive watermark based on a redundant wavelet transform. In: Proceedings of the International Conference on Image Processing 2:277-280.

    Google Scholar 

  41. Antonini M., Barlaud M., Mathieu P., Daubechies I. (1992) Image coding using wavelet transform. In: IEEE Transactions on Image Processing 1(2):205-220.

    Google Scholar 

  42. Weston J., Watkins C. (1999) Support vector machines for multi-class pattern recognition. In: Proceedings of the 7th European Symposium on Artificial Neural Networks 219-224.

    Google Scholar 

  43. Kang S. K., Min J. H., Paik J. K. (2001) Segmentation-based spatially adaptive motion blur removal and its application to surveillance systems. In: Proceedings of International Conference on Image Processing 1:245-248.

    Google Scholar 

  44. Malladi R., Sethian J. A. (1995) Image processing via level set curvature flow. In: Proceedings of National Academy of Sciences 92:7046-7050.

    Google Scholar 

  45. Land E. H., McCann J. J. (1971) Lightness and retinex theory. In: Journal of the Optical Society of America 61:1-11.

    Google Scholar 

  46. Turk M., Pentland A. (1991) Eigenfaces for recognition. In: Journal of Cognitive Neuroscience 3:72-86.

    Google Scholar 

  47. Belhumeur P. N., Hespanha J. P., Kriegman D. J. (1997) Eigenfaces vs. fisher-faces: recognition using class specific linear projection. In: IEEE Transactions on Pattern Analysis and Machine Intelligence 19(7):711-720.

    Google Scholar 

  48. Penev P., Atick J. (1996) Local feature analysis: A general statistical theory for object representation. In: Network: Computation in Neural Systems 7:477-500.

    Google Scholar 

  49. Singh R., Vatsa M., Noore A. (2005) Textural feature based face recognition for single training images. In: IEE Electronics Letters 41:23-24.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vatsa, M., Singh, R., Noore, A. (2008). SVM Based Adaptive Biometric Image Enhancement Using Quality Assessment. In: Prasad, B., Prasanna, S.R.M. (eds) Speech, Audio, Image and Biomedical Signal Processing using Neural Networks. Studies in Computational Intelligence, vol 83. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75398-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75398-8_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75397-1

  • Online ISBN: 978-3-540-75398-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics