The quality of input data has an important role in the performance of a biometric system. Images such as fingerprint and face captured under non-ideal conditions may require additional preprocessing. This chapter presents intelligent SVM techniques for quality assessment and enhancement. The proposed quality assessment algorithm associates the quantitative quality score of the image that has a specific type of irregularity such as noise, blur, and illumination. This enables the application of the most appropriate quality enhancement algorithm on the non-ideal image. We further propose a SVM quality enhancement algorithm which simultaneously applies selected enhancement algorithms to the original image and selects the best quality regions from the global enhanced image. These selected regions are used to generate single high quality image. The performance of the proposed algorithms is validated by considering face biometrics as the case study. Results show that the proposed algorithms improve the verification accuracy of face recognition by around 10–17%.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Wayman J., Jain A. K., Maltoni D., Maio D. (2005) Biometric systems: technology, design and performance evaluation, Springer, Berlin Heidelberg New York.
Jain A. K., Bolle R., Pankanti S. (Eds.) (1999) Biometrics: personal identification in networked society, Kluwer Academic, Dordretch.
Tabassi E., Wilson C., Watson C. (2004) Fingerprint image quality. In: NIST Research Report NISTIR7151.
Hicklin A., Khanna R. (2006) The role of data quality in biometric systems. Technical Report, Mitretek Systems.
Vapnik V. N. (1995) The nature of statistical learning theory. Springer, Berlin Heidelberg New York.
Bolle R. M., Pankanti S. U., Yao Y. S. (1999) System and methods for deter-mining the quality of fingerprint images. In: United States Patent Number US5963656.
Shen L., Kot A., Koo W. (2001) Quality measures of fingerprint images. In: Proceedings of Audio- and Video-based Biometric Person Authentication 266-271.
Agrawal M. (2006) Multi-impression enhancement of fingerprint images. Master Thesis. West Virginia University.
Ratha N., Bolle R. (1999) Fingerprint image quality estimation. In: IBM computer science research report RC21622.
Lim E., Jiang X., Yau W. (2002) Fingerprint quality and validity analysis. In: Proceedings of International Conference on Image Processing 1:469-472.
Hong L., Wan Y., Jain A. (1998) Fingerprint image enhancement: algorithms and performance evaluation. In: IEEE Transactions on Pattern Analysis and Machine Intelligence 20(8):777-789.
Chen Y., Dass S., Jain A. (2005) Fingerprint quality indices for predicting authentication performance. In: Proceedings of Audio- and Video-based Biometric Person Authentication 160-170.
Aguilar J. F., Chen Y., Garcia J. O., Jain A. (2006) Incorporating image quality in multi-algorithm fingerprint verification. In: Proceedings of International Conference on Biometrics 213-220.
O’Gormann L., Nickerson J. V. (1989) An approach to fingerprint filter design. In: Pattern Recognition, 22(1):29-38.
Greenberg S., Aladjem M., Kogan D., Dimitrov I. (2000) Fingerprint image enhancement using filtering techniques. In: International Conference on Pattern Recognition 3:326-329.
Chikkerur S., Cartwright A., Govindaraju V. (2005) Fingerprint Image Enhancement Using STFT Analysis, International Workshop on Pattern Recog-nition for Crime Prevention, Security and Surveillance, Lecture Notes in Computer Science, Springer Berlin/Heidelberg, Volume 3687/2005, Pages 20-29.
Daugman J. (2001) Statistical richness of visual phase information: update on recognizing persons by iris patterns. In: International Journal on Computer Vision 45:25-38.
Ma L., Tan T., Wang Y., Zhang D. (2003) Personal identification based on iris texture analysis. In: IEEE Transactions on Pattern Analysis and Machine Intelligence 25(12):1519-1533.
Chen Y., Dass S., Jain A. (2006) Localized iris image quality using 2-D wavelets. In: Proceedings of International Conference on Biometrics 373-381.
Zhang G., Salganicoff M. (1999) Method of measuring the focus of close-up image of eyes. In: United States Patent Number 5953440.
Kalka N. D., Zuo J., Dorairaj V., Schmid N. A., Cukic B. (2006). Image Quality Assessment for Iris Biometric. In: Proceedings of SPIE Conference on Biometric Technology for Human Identification III, 6202:61020D-1-62020D-11.
Belhumeur P. N., Kriegman D. J. (1998) What is the space of images of an object under all possible lighting conditions? In: International Journal on Computer Vision 28(3):245-260.
Basri R., Jacobs D. (2000) Lambertian reflectance and linear subspaces. NEC Research Institute Technical Report 2000-172R.
Ramamoorthi R., Hanrahan P. (2001) On the relationship between radiance and irradiance: determining the illumination from images of a convex Lambertian object. In: Journal of Optical Society of America 18(10):2448-2459.
Zhang L., Samaras D. (2003) Face recognition under variable lighting using harmonic image exemplars. In: Proceedings of International Conference on Computer Vision on Pattern Recognition 1:19-25.
Shan S., Gao W., Cao B., Zhao D. (2003) Illumination normalization for robust face recognition against varying lighting conditions. In: Proceedings of International Workshop on Analysis and Modeling of Faces and Gestures 157-164.
Shashua A., Riklin-Raviv T. (2001) The quotient image: class-based re-rendering and recognition with varying illuminations. In: IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(2):129-139.
Chen T., Yin W., Sean X. Z., Comaniciu D., Huang T. S. (2006) Total variation models for variable lighting face recognition. In: IEEE Transactions on Pattern Analysis and Machine Intelligence 28(9):1519-1524.
Fronthaler H., Kollreider K., Bigun J.(2006) Automatic image quality assessment with application in biometrics. In: Computer Vision and Pattern Recognition Workshop 30-30.
Levine M. D., Bhattacharya J. (2005) Detecting and removing specularities in facial images. In: Computer Vision and Image Understanding 100:330-356.
Gross R., Brajovic V. (2003) An image pre-processing algorithm for illumination invariant face recognition. In: Proceedings of Audio- and Video Based Biometric Person Authentication 10-18.
King S., Tian G. Y., Taylor D., Ward S. (2003) Cross-channel histogram equal-isation for colour face recognition. In: Proceedings of International Conference on Audio- and Video-Based Biometric Person Authentication 454-461.
Kela N., Rattani A., Gupta P. (2006) Illumination invariant elastic bunch graph matching for efficient face recognition. In: Proceedings of International Conference on Computer Vision and Pattern Recognition Workshop 42-42.
Chen P.-H., Lin C.-J., Schölkopf B. (2005) A tutorial on nu-support vector machines. In: Applied Stochastic Models in Business and Industry 21:111-136.
Chew H. G., Lim C. C., R. E. Bogner. (2004) An implementation of training dual-nu support vector machines. In: Qi, Teo, and Yang, (Eds.) Optimization and Control with Applications, Kluwer, Dordretch.
Daubechies I. (1992) Ten lectures on wavelets. In: Society for Industrial and Applied Mathematics.
Rioul O., Vetterli M. (1991) Wavelets and signal processing. In: IEEE Signal Processing Magazine 8(4):14-38.
Hua L., Fowler J. E. (2001) RDWT and image watermarking. In: Technical Report MSSU-COE-ERC-01-18, Engineering Research Center, Mississippi State University.
Fowler J. E. (2005) The redundant discrete wavelet transform and additive noise. In: IEEE Signal Processing Letters 12(9):629-632.
Cao J.-G., Fowler J. E., Younan N. H. (2001) An image-adaptive watermark based on a redundant wavelet transform. In: Proceedings of the International Conference on Image Processing 2:277-280.
Antonini M., Barlaud M., Mathieu P., Daubechies I. (1992) Image coding using wavelet transform. In: IEEE Transactions on Image Processing 1(2):205-220.
Weston J., Watkins C. (1999) Support vector machines for multi-class pattern recognition. In: Proceedings of the 7th European Symposium on Artificial Neural Networks 219-224.
Kang S. K., Min J. H., Paik J. K. (2001) Segmentation-based spatially adaptive motion blur removal and its application to surveillance systems. In: Proceedings of International Conference on Image Processing 1:245-248.
Malladi R., Sethian J. A. (1995) Image processing via level set curvature flow. In: Proceedings of National Academy of Sciences 92:7046-7050.
Land E. H., McCann J. J. (1971) Lightness and retinex theory. In: Journal of the Optical Society of America 61:1-11.
Turk M., Pentland A. (1991) Eigenfaces for recognition. In: Journal of Cognitive Neuroscience 3:72-86.
Belhumeur P. N., Hespanha J. P., Kriegman D. J. (1997) Eigenfaces vs. fisher-faces: recognition using class specific linear projection. In: IEEE Transactions on Pattern Analysis and Machine Intelligence 19(7):711-720.
Penev P., Atick J. (1996) Local feature analysis: A general statistical theory for object representation. In: Network: Computation in Neural Systems 7:477-500.
Singh R., Vatsa M., Noore A. (2005) Textural feature based face recognition for single training images. In: IEE Electronics Letters 41:23-24.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Vatsa, M., Singh, R., Noore, A. (2008). SVM Based Adaptive Biometric Image Enhancement Using Quality Assessment. In: Prasad, B., Prasanna, S.R.M. (eds) Speech, Audio, Image and Biomedical Signal Processing using Neural Networks. Studies in Computational Intelligence, vol 83. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75398-8_16
Download citation
DOI: https://doi.org/10.1007/978-3-540-75398-8_16
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-75397-1
Online ISBN: 978-3-540-75398-8
eBook Packages: EngineeringEngineering (R0)