[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Exploiting Context Information for Identification of Relevant Experts in Collaborative Workplace-Embedded E-Learning Environments

  • Conference paper
Creating New Learning Experiences on a Global Scale (EC-TEL 2007)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 4753))

Included in the following conference series:

Abstract

This work introduces an approach to discover collaboration partners and adequate advising experts in a workplace-embedded collaborative e-learning environment. Based on existing papers dealing with work task and user context modelling, we propose the following steps towards a successful collaboration initiation. In the beginning, the user’s current process task needs to be identified (1). Taking into account the knowledge about the current process, availability of experts as well as organizational and social distance, relevant experts regarding the actual work task of the learner are pre-selected by the environment (2). Depending on the pre-selection and users’ preferences, the potential collaboration partners are displayed in an expert list (3). That way, the learner is able to initiate beneficial collaborations, whose transcripts are used to enhance the existing knowledge base of learning documents (4).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aalst, W.: Three Good reasons for Using a Petri-net-based Workflow Management System. In: Navathe, S., Wakayama, T. (eds.) IPIC 1996. Proceedings of the International Working Conference on Information and Process Integration in Enterprises, Camebridge, Massachusetts, pp. 179–201 (1996)

    Google Scholar 

  2. Bauer, T., Leake, D.: A Research Agent Architecture for Real Time Data Collection and Analysis. In: Proceedings of the Workshop on Infrastructure for Agents, MAS, and Scalable MAS (2001)

    Google Scholar 

  3. Birnbaum, L., Hopp, W.J., Iravani, S., Livingston, K., Shou, B., Tirpak, T.: Task aware information access for diagnosis of manufacturing problems. In: IUI, pp. 308–310 (2005)

    Google Scholar 

  4. Burges, C.J.C.: A Tutorial on Support Vector Machines for Pattern Recognition. Data Mining and Knowledge Discovery 2(2), 121–167 (1998)

    Article  Google Scholar 

  5. Clark, P., Boswell, R.: Rule Induction with CN2: Some Recent Improvements. Proceedings of the Fifth European Working Session on Learning 482, 151–163 (1991)

    MathSciNet  Google Scholar 

  6. Domingos, P., Pazzani, M.J.: Beyond Independence: Conditions for the Optimality of the Simple Bayesian Classifier. In: International Conference on Machine Learning, pp. 105–112 (1996)

    Google Scholar 

  7. Fürnkranz, J., Widmer, G.: Incremental Reduced Error Pruning. In: Proceedings the Eleventh International Conference on Machine Learning, New Brunswick, NJ, pp. 70–77 (1994)

    Google Scholar 

  8. Han, J., Kamber, M.: Data Mining. Concepts and Techniques. Morgan Kaufmann Publishers, San Francisco (2001)

    Google Scholar 

  9. Horvitz, E., Breese, J., Heckerman, D., Hovel, D., Rommelse, K.: The Lumiere project: Bayesian user modeling for inferring the goals and needs of software users. In: Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence, Madison, WI, pp. 256–265 (1998)

    Google Scholar 

  10. Joachims, T.: Text Categorization with Support Vector Machines: Learning with Many Relevant Features. In: Proceedings of the 10th European Conference on Machine Learning, pp. 137–142 (1998)

    Google Scholar 

  11. Kienle, A., Menold, N., Herrmann, T.: Wissensgenese, Wissensverteilung und Wissensorganisation der der Arbeitspraxis, chapter Technische und organisatorische gestaltungsoptionen für unternehmensinterne Wissensmanagementprojekte, pp. 109–153. Westdeutscher Verlag (2003)

    Google Scholar 

  12. Lave, J., Wenger, E.: Situated Learning: Legitimate Peripheral Participation. Cambridge University Press, Cambridge (1991)

    Google Scholar 

  13. Ley, T., Lindstaedt, S.N., Albert, D.: Competency Management Using the Competence Performance Approach: Modelling, Assessment, Validation and Use. In: Sicilia, M.A. (ed.) Competencies in Organizational E-Learning, pp. 83–119. Information Science Publishing, Hershey, PA (2006)

    Google Scholar 

  14. Lindstaedt, S.N., Ley, T., Mayer, H.: Integrating Working and Learning with APOSDLE. In: Proceedings of the 11th Business Meeting of Forum Neue Medien, Graz, Verlag Forum Neue Medien (2005)

    Google Scholar 

  15. Mcdonald, D.W.: Supporting nuance in groupware design: moving from naturalistic expertise location to expertise recommendation. PhD thesis, Chair-Mark S. Ackerman (2000)

    Google Scholar 

  16. Mühlpfordt, M.: Dual Interaction Spaces: Integration synchroner Kommunikation und Kooperation. In: Mühlhäuser, M., Rößling, G., Steinmetz, R. (eds.) LNI, GI, vol. 87, pp. 99–110 (2006)

    Google Scholar 

  17. Object Management Group. OMG BPMN Final Adopted Specification (2006), http://www.omg.org/docs/dtc/06-02-01.pdf

  18. Platt, J.: Fast Training of Support Vector Machines using Sequential Minimal Optimization. MIT Press, Cambridge (1998)

    Google Scholar 

  19. Quinlan, J.R.: Induction of Decision Trees. Machine Learning 1(1), 81–106 (1986)

    Google Scholar 

  20. Quinlan, J.R.: Simplifying Decision Trees. International Journal of Man-Machine Studies 27(3), 221–234 (1987)

    Article  Google Scholar 

  21. Quinlan, J.R.: Learning decision tree classifiers. ACM Computing Surveys (CSUR) 28(1), 71–72 (1996)

    Article  Google Scholar 

  22. Scheir, P., Hofmair, P., Granitzer, M., Lindstaedt, S.: The OntologyMapper plug-in: Supporting Semantic Annotation of Text-Documents by Classification. In: Semantic Systems From Vision to Applications - Proceedings of the SEMANTICS 2006, pp. 291–301. Österreichische Computer Gesellschaft (2006)

    Google Scholar 

  23. Schölkopf, B., Smola, A.J.: Learning with Kernels. MIT Press, Cambridge (2002)

    Google Scholar 

  24. Ulbrich, A., Scheir, P., Lindstaedt, S.N., Görtz, M.: A Context-Model for Supporting Work-Integrated Learning. In: Nejdl, W., Tochtermann, K. (eds.) EC-TEL 2006. LNCS, vol. 4227, pp. 525–530. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  25. van Welie, M., van der Veer, G.C., Eliëns, A.: An Ontology for Task World Models. In: Markopoulos, P., Johnson, P. (eds.) Design, Specification and Verification of Interactive Systems 1998, Wien, pp. 57–70. Springer, Heidelberg (1998)

    Google Scholar 

  26. Wasserman, S., Faust, K., Iacobucci, D.: Social Network Analysis: Methods and Applications. Structural Analysis in the Social Sciences. Cambridge University Press, Cambridge (1994)

    Google Scholar 

  27. Wessner, M.: Kontextuelle Kooperation in virtuellen Lernumgebungen. Eul, Lohmar (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Erik Duval Ralf Klamma Martin Wolpers

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lokaiczyk, R. et al. (2007). Exploiting Context Information for Identification of Relevant Experts in Collaborative Workplace-Embedded E-Learning Environments. In: Duval, E., Klamma, R., Wolpers, M. (eds) Creating New Learning Experiences on a Global Scale. EC-TEL 2007. Lecture Notes in Computer Science, vol 4753. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75195-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75195-3_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75194-6

  • Online ISBN: 978-3-540-75195-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics