Abstract
The algorithmic methods of commutative algebra based on the Gröbner bases technique are briefly sketched out in the context of an application to the constrained finite dimensional polynomial Hamiltonian systems. The effectiveness of the proposed algorithms and their implementation in Mathematica is demonstrated for the light-cone version of the SU(3) Yang-Mills mechanics. The special homogeneous Gröbner basis is constructed that allow us to find and classify the complete set of constraints the model possesses.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Pommaret, J.F.: Partial Differential Equations and Group Theory. New Perspectives for Applications. Kluwer, Dordrecht (1994)
Reid, G., Wittkopf, A., Boulton, A.: Reduction of systems of nonlinear partial differential equations to simplified involutive forms. Euro. J. Appl. Maths. 7, 604–635 (1996)
Gerdt, V.P., Blinkov, Y.A.: Involutive bases of polynomial ideals. Math. Comp. Simul. 45, 519–542 (2027)
Gerdt, V.P.: Completion of linear differential systems to involution. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) Computer Algebra in Scientific Computing / CASC 1999, pp. 115–137. Springer, Berlin (1999)
Calmet, J., Hausdorf, M., Seiler, W.M.: A constructive introduction to involution. In: Akerkar, R. (ed.) International Symposium on Applications of Computer Algebra/ISACA 2000, pp. 33–50. Allied Publishers, New Delhi (2001)
Gerdt, V.P.: Involutive algorithms for computing Gröbner bases (arXiv:math.AC/0501111). In: Cojocaru, S., Pfister, G., Ufnarovski, V. (eds.) Computational Commutative and Non-Commutative algebraic geometry. NATO Science Series, pp. 199–225. IOS Press, Amsterdam (2005)
Dirac, P.A.M.: Generalized Hamiltonian dynamics, Canad. J. Math. 2, 129–148 (1950), Lectures on Quantum Mechanics, Belfer Graduate School of Science, Monographs Series, Yeshiva University, New York, 1964.
Sundermeyer, K.: Constrained Dynamics. Lecture Notes in Physics, vol. 169. Spinger, Heidelberg (1982)
Henneaux, M., Teitelboim, C.: Quantization of Gauge Systems. Princeton University Press, Princeton, New Jersey (1992)
Gerdt, V.P., Gogilidze, S.A.: Constrained Hamiltonian systems and Gröbner bases. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) Computer Algebra in Scientific Computing/CASC 1999, pp. 138–146. Springer, Berlin (1999)
Gerdt, V.P., Khvedelidze, A.M., Mladenov, D.M.: Analysis of constraints in light-cone version of SU(2) Yang-Mills mechanics. In: Gerdt, V.P. (ed.) Computer Algebra and its Applications to Physics/CAAP 2001, Dubna, JINR, pp. 83–92 (2002), arXiv:hep-th/0209107
Gerdt, V.P., Khvedelidze, A.M., Mladenov, D.M.: Light-cone SU(2) Yang-Mills theory and conformal mechanics, arXiv:hep-th/0222100
Gerdt, V., Khvedelidze, A., Mladenov, D.: On application of involutivity analysis of differential equations to constrained dynamical systems. In: Sissakian, A.N. (ed.)Symmetries and Integrable Systems, Selected papers of the seminar, 2000-2005, Dubna, JINR, vol. I, pp. 132–150 (2006), arXiv:hep-th/0311174
Gerdt, V., Khvedelidze, A., Palii, Y.: Towards an algorithmisation of the Dirac constraint formalism. In: Calmet, J., Seiler, W.M., Tucker, R.W. (eds.) Global Integrabilty of Field Theories/GIFT’ 2006, Cockroft Institute, Daresbury, UK, pp. 135–154 (2006), arXiv:math-ph/0611021
Becker, T., Weispfenning, V.: Gröbner Bases. A Computational Approach to Commutative Algebra. In: Graduate Texts in Mathematics, vol. 141, Springer, New York (1993)
Cox, D., Little, J., O’Shea, D.: Ideals, Varieties and Algorithms, 2nd edn. Springer, New York (1996)
Buchberger, B., Winkler, F. (eds.): Gröbner Bases and Applications. Cambridge University Press, Cambridge (1998)
Hurtley, D.H., Tucker, R.W., Tuckey, P.: Constrained Hamiltonian dynamics and exterior differential systems. J. Phys. A. 24, 5252–5265 (1991)
Seiler, W.M., Tucker, R.W.: Involution and constrained dynamics I: the Dirac approach. J. Phys. A. 28, 4431–4451 (1995)
Seiler, W.M.: Involution and constrained Dynamics. II: the Faddeev-Jackiw approach. J. Phys. A. 28, 7315–7331 (1995)
Baseian, G.Z., Matinyan, S.G., Savvidy, G.K.: Nonlinear plane waves in massless Yang-Mills theory. Pisma Zh. Eksp. Teor. Fiz. 29, 641 (1979)
Asatryan, H.M., Savvidy, G.K.: Configuration manifold of Yang-Mills classical mechanics. Phys. Lett. A 99, 290–292 (1983)
Lüscher, M.: Some analytic results cocerning the mass spectrum of Yang-Mills gauge theories on a torus. Nucl. Phys. B219, 233–261 (1983)
Simon, B.: Some quantum operators with discrete spectrum but classically continuos spectrum. Annals of Phys. 146, 209–220 (1983)
Matinyan, S.G.: Dynamical chaos of nonabelian gauge fields. Fiz. Elem. Chast. Atom. Yadra 16, 522–550 (1985)
Soloviev, M.A.: On the geometry of classical mechanics with nonabelian gauge symmetry. Teor. Mat. Fiz. 73, 3–15 (1987)
Dahmen, B., Raabe, B.: Unconstrained SU(2) and SU(3) Yang-Mills classical mechanics. Nucl. Phys. B384, 352–380 (1992)
Gogilidze, S.A., Khvedelidze, A.M., Mladenov, D.M., Pavel, H.-P.: Hamiltonian reduction of SU(2) Dirac-Yang-Mills mechanics. Phys. Rev. D 57, 7488–7500 (1998)
Khvedelidze, A.M., Pavel, H.P.: On the groundstate of Yang-Mills quantum mechanics (arXiv:hep-th/9905093). Phys. Lett. A 267, 96 (2000)
Khvedelidze, A.M., Mladenov, D.M.: Euler-Calogero-Moser system from SU(2) Yang-Mills theory. Phys. Rev. D 62, 125016 (1-9) (2000)
Pavel, H.P.: SU(2) Yang-Mills quantum mechanics of spatially constant fields, arXiv:hep-th/0701283
Heinzl, T.: Light-cone quantization: Foundations and applications. Lecture Notes in Physics, vol. 572, p. 55. Spinger, Heidelberg (2001)
Faugère, J.-C.: A new efficient algorithm for computing Gröbner bases without reduction to zero (F5). In: Mora, T. (ed.) International Symposium on Symbolic and Algebraic Computation/ISSAC 2002, pp. 75–83. ACM Press, New York (2002)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Gerdt, V., Khvedelidze, A., Palii, Y. (2007). Deducing the Constraints in the Light-Cone SU(3) Yang-Mills Mechanics Via Gröbner Bases. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2007. Lecture Notes in Computer Science, vol 4770. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75187-8_12
Download citation
DOI: https://doi.org/10.1007/978-3-540-75187-8_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-75186-1
Online ISBN: 978-3-540-75187-8
eBook Packages: Computer ScienceComputer Science (R0)