[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Deducing the Constraints in the Light-Cone SU(3) Yang-Mills Mechanics Via Gröbner Bases

  • Conference paper
Computer Algebra in Scientific Computing (CASC 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4770))

Included in the following conference series:

  • 717 Accesses

Abstract

The algorithmic methods of commutative algebra based on the Gröbner bases technique are briefly sketched out in the context of an application to the constrained finite dimensional polynomial Hamiltonian systems. The effectiveness of the proposed algorithms and their implementation in Mathematica is demonstrated for the light-cone version of the SU(3) Yang-Mills mechanics. The special homogeneous Gröbner basis is constructed that allow us to find and classify the complete set of constraints the model possesses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Pommaret, J.F.: Partial Differential Equations and Group Theory. New Perspectives for Applications. Kluwer, Dordrecht (1994)

    MATH  Google Scholar 

  2. Reid, G., Wittkopf, A., Boulton, A.: Reduction of systems of nonlinear partial differential equations to simplified involutive forms. Euro. J. Appl. Maths. 7, 604–635 (1996)

    MathSciNet  Google Scholar 

  3. Gerdt, V.P., Blinkov, Y.A.: Involutive bases of polynomial ideals. Math. Comp. Simul. 45, 519–542 (2027)

    Article  MathSciNet  Google Scholar 

  4. Gerdt, V.P.: Completion of linear differential systems to involution. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) Computer Algebra in Scientific Computing / CASC 1999, pp. 115–137. Springer, Berlin (1999)

    Google Scholar 

  5. Calmet, J., Hausdorf, M., Seiler, W.M.: A constructive introduction to involution. In: Akerkar, R. (ed.) International Symposium on Applications of Computer Algebra/ISACA 2000, pp. 33–50. Allied Publishers, New Delhi (2001)

    Google Scholar 

  6. Gerdt, V.P.: Involutive algorithms for computing Gröbner bases (arXiv:math.AC/0501111). In: Cojocaru, S., Pfister, G., Ufnarovski, V. (eds.) Computational Commutative and Non-Commutative algebraic geometry. NATO Science Series, pp. 199–225. IOS Press, Amsterdam (2005)

    Google Scholar 

  7. Dirac, P.A.M.: Generalized Hamiltonian dynamics, Canad. J. Math. 2, 129–148 (1950), Lectures on Quantum Mechanics, Belfer Graduate School of Science, Monographs Series, Yeshiva University, New York, 1964.

    Google Scholar 

  8. Sundermeyer, K.: Constrained Dynamics. Lecture Notes in Physics, vol. 169. Spinger, Heidelberg (1982)

    MATH  Google Scholar 

  9. Henneaux, M., Teitelboim, C.: Quantization of Gauge Systems. Princeton University Press, Princeton, New Jersey (1992)

    MATH  Google Scholar 

  10. Gerdt, V.P., Gogilidze, S.A.: Constrained Hamiltonian systems and Gröbner bases. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) Computer Algebra in Scientific Computing/CASC 1999, pp. 138–146. Springer, Berlin (1999)

    Google Scholar 

  11. Gerdt, V.P., Khvedelidze, A.M., Mladenov, D.M.: Analysis of constraints in light-cone version of SU(2) Yang-Mills mechanics. In: Gerdt, V.P. (ed.) Computer Algebra and its Applications to Physics/CAAP 2001, Dubna, JINR, pp. 83–92 (2002), arXiv:hep-th/0209107

    Google Scholar 

  12. Gerdt, V.P., Khvedelidze, A.M., Mladenov, D.M.: Light-cone SU(2) Yang-Mills theory and conformal mechanics, arXiv:hep-th/0222100

    Google Scholar 

  13. Gerdt, V., Khvedelidze, A., Mladenov, D.: On application of involutivity analysis of differential equations to constrained dynamical systems. In: Sissakian, A.N. (ed.)Symmetries and Integrable Systems, Selected papers of the seminar, 2000-2005, Dubna, JINR, vol. I, pp. 132–150 (2006), arXiv:hep-th/0311174

    Google Scholar 

  14. Gerdt, V., Khvedelidze, A., Palii, Y.: Towards an algorithmisation of the Dirac constraint formalism. In: Calmet, J., Seiler, W.M., Tucker, R.W. (eds.) Global Integrabilty of Field Theories/GIFT’ 2006, Cockroft Institute, Daresbury, UK, pp. 135–154 (2006), arXiv:math-ph/0611021

    Google Scholar 

  15. Becker, T., Weispfenning, V.: Gröbner Bases. A Computational Approach to Commutative Algebra. In: Graduate Texts in Mathematics, vol. 141, Springer, New York (1993)

    Google Scholar 

  16. Cox, D., Little, J., O’Shea, D.: Ideals, Varieties and Algorithms, 2nd edn. Springer, New York (1996)

    MATH  Google Scholar 

  17. Buchberger, B., Winkler, F. (eds.): Gröbner Bases and Applications. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  18. Hurtley, D.H., Tucker, R.W., Tuckey, P.: Constrained Hamiltonian dynamics and exterior differential systems. J. Phys. A. 24, 5252–5265 (1991)

    Google Scholar 

  19. Seiler, W.M., Tucker, R.W.: Involution and constrained dynamics I: the Dirac approach. J. Phys. A. 28, 4431–4451 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  20. Seiler, W.M.: Involution and constrained Dynamics. II: the Faddeev-Jackiw approach. J. Phys. A. 28, 7315–7331 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  21. http://fgbrs.lip6.fr/salsa/Software/

  22. http://invo.jinr.ru

  23. Baseian, G.Z., Matinyan, S.G., Savvidy, G.K.: Nonlinear plane waves in massless Yang-Mills theory. Pisma Zh. Eksp. Teor. Fiz. 29, 641 (1979)

    Google Scholar 

  24. Asatryan, H.M., Savvidy, G.K.: Configuration manifold of Yang-Mills classical mechanics. Phys. Lett. A 99, 290–292 (1983)

    MathSciNet  Google Scholar 

  25. Lüscher, M.: Some analytic results cocerning the mass spectrum of Yang-Mills gauge theories on a torus. Nucl. Phys. B219, 233–261 (1983)

    Article  Google Scholar 

  26. Simon, B.: Some quantum operators with discrete spectrum but classically continuos spectrum. Annals of Phys. 146, 209–220 (1983)

    Article  MATH  Google Scholar 

  27. Matinyan, S.G.: Dynamical chaos of nonabelian gauge fields. Fiz. Elem. Chast. Atom. Yadra 16, 522–550 (1985)

    MathSciNet  Google Scholar 

  28. Soloviev, M.A.: On the geometry of classical mechanics with nonabelian gauge symmetry. Teor. Mat. Fiz. 73, 3–15 (1987)

    Google Scholar 

  29. Dahmen, B., Raabe, B.: Unconstrained SU(2) and SU(3) Yang-Mills classical mechanics. Nucl. Phys. B384, 352–380 (1992)

    Article  MathSciNet  Google Scholar 

  30. Gogilidze, S.A., Khvedelidze, A.M., Mladenov, D.M., Pavel, H.-P.: Hamiltonian reduction of SU(2) Dirac-Yang-Mills mechanics. Phys. Rev. D 57, 7488–7500 (1998)

    MathSciNet  Google Scholar 

  31. Khvedelidze, A.M., Pavel, H.P.: On the groundstate of Yang-Mills quantum mechanics (arXiv:hep-th/9905093). Phys. Lett. A 267, 96 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  32. Khvedelidze, A.M., Mladenov, D.M.: Euler-Calogero-Moser system from SU(2) Yang-Mills theory. Phys. Rev. D 62, 125016 (1-9) (2000)

    Google Scholar 

  33. Pavel, H.P.: SU(2) Yang-Mills quantum mechanics of spatially constant fields, arXiv:hep-th/0701283

    Google Scholar 

  34. Heinzl, T.: Light-cone quantization: Foundations and applications. Lecture Notes in Physics, vol. 572, p. 55. Spinger, Heidelberg (2001)

    Google Scholar 

  35. Faugère, J.-C.: A new efficient algorithm for computing Gröbner bases without reduction to zero (F5). In: Mora, T. (ed.) International Symposium on Symbolic and Algebraic Computation/ISSAC 2002, pp. 75–83. ACM Press, New York (2002)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Victor G. Ganzha Ernst W. Mayr Evgenii V. Vorozhtsov

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gerdt, V., Khvedelidze, A., Palii, Y. (2007). Deducing the Constraints in the Light-Cone SU(3) Yang-Mills Mechanics Via Gröbner Bases. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2007. Lecture Notes in Computer Science, vol 4770. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75187-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75187-8_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75186-1

  • Online ISBN: 978-3-540-75187-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics