All the power of computational techniques for data processing and analysis is worthless without human analysts choosing appropriate methods depending on data characteristics, setting parameters and controlling the work of the methods, interpreting results obtained, understanding what to do next, reasoning, and drawing conclusions. To enable effective work of human analysts, relevant information must be presented to them in an adequate way. Since visual representation of information greatly promotes man’s perception and cognition, visual displays of data and results of computational processing play a very important role in analysis.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
S.R. Alpert. Comprehensive mapping of knowledge and information resources: The case of webster. In Knowledge and Information Visualization, pp. 220–237, 2005.
N. Andrienko and G. Andrienko. Exploratory Analysis of Spatial and Temporal Data: A Systematic Approach. Springer, 2006.
N. Andrienko, G. Andrienko, and P. Gatalsky. Impact of data and task characteristics on design of spatiotemporal data visualization tools. In Exploring Geovisualization, pp. 201–222. Elsevier, 2005.
N.V. Andrienko, G.L. Andrienko, and P. Gatalsky. Supporting visual exploration of object movement. In Advanced Visual Interfaces, pp. 217–220, 2000.
M.Q.W. Baldonado, A. Woodruff, and A. Kuchinsky. Guidelines for using multiple views in information visualization. In Advanced Visual Interfaces, pp. 110–119, 2000.
J. Bertin. Semiology of Graphics. Diagrams, Networks, Maps. University of Wisconsin Press, 1983.
A. Buja, J.A. McDonald, J. Michalak, and W. Stuetzle. Interactive data visualization using focusing and linking. In Proceedings of the 2nd Conference on Visualization (VIS’91), pp. 156–163. IEEE Computer Society Press, 1991.
R.N. Buliung and P.S. Kanaroglou. An exploratory spatial data analysis (esda) toolkit for the analysis of activity/travel data. In Proceedings of Computational Science and Its Applications (ICCSA’04), Vol. 3044. Lecture Notes in Computer Science, pp. 1016–1025. Springer, 2004.
P. Buono. Analysing association rules with an interactive graph-based technique. In Proceedings of the International Conference on Human Computer Interaction (HCI’03), pp. 675–679, 2003.
A.J. Cañas, R. Carff, G. Hill, M.M. Carvalho, M. Arguedas, T.C. Eskridge, J. Lott, and R. Carvajal. Concept maps: Integrating knowledge and information visualization. In Knowledge and Information Visualization, pp. 205–219, 2005.
D. Carr. Looking at large data sets using binned data plots. In Computing and Graphics in Statistics, pp. 7–39. Springer, 1991.
I. Drecki and P. Forer. Tourism in New Zealand – International Visitors on the Move (A1 Cartographic Plate). Tourism, Recreation Research and Education Centre (TRREC), Lincoln University, 2000.
J.A. Dykes and D.M. Mountain. Seeking structure in records of spatiotemporal behaviour: Visualization issues, efforts and applications. Computational Statistics and Data Analysis, 43(4):581–603, 2003.
S. Eick. Engineering perceptually affective visualizations for abstract data. In Scientific Visualization Overviews, Methodologies and Techniques, pp. 191–210. IEEE Computer Science Press, 1997.
C. Elzakker. The Use of Maps in the Exploration of Geographic Data. Doctorìs Dissertation, University of Utrecht (Netherlands Geographical Studies 326), 2004.
U.M. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. From data mining to knowledge discovery in databases. AI Magazine, 17(3):37–54, 1996.
P. Forer and O. Huisman. Space, time and sequencing: Substitution at the physical/virtual interface. In Information, Place and Cyberspace: Issues in Accessibility, pp. 73–90. Springer, 2000.
M. Ganesh, E. Han, V. Kumar, S. Shekhar, and J. Srivastava. Visual Data Mining: Framework and Algorithm Development. Technical report.
F. Giannotti, M. Nanni, and D. Pedreschi. Efficient mining of temporally annotated sequences. In Proceedings of the Sixth International Conference on Data Mining (SDM’06), pp. 346–357.
D. Guo, J. Chen, A.M. MacEachren, and K. Liao. A visualization system for space-time and multivariate patterns (vis-stamp). IEEE Transactions Visualization and Computing Graphics, 12(6):1461–1474, 2006.
D. Guo and M. Gahegan. Spatial ordering and encoding for geographic data mining and visualization. Journal of Intelligent Information Systems, 27(3):243–266, 2006.
M. Hao, M. Hsu, U. Dayal, S. Wei, T. Sprenger, and T. Holenstein. Market Basket Analysis Visualization on a Spherical Surface. Technical Report. http://www.hpl.hp.com/techreports/2001/HPL-2001-3.pdf, 2001.
B. Hetzler, W. Harris, S. Havre, and P. Whitney. Visualizing the full spectrum of document relationships, 1998.
S. Imfeld. Time, Points and Space: Analysis of Wildlife Data in GIS. Dissertation, University of Zurich, Department of Geography, Zurich, 2000.
T. Kapler and W. Wright. Geotime information visualization. Information Visualization, 4(2):136–146, 2005.
D.A. Keim. Information visualization and visual data mining. IEEE Transactions Visualization and Computer Graphics, 8(1):1–8, 2002.
I. Kopanakis. Visualization of Data Mining Outcomes. http://www.csd.uoc.gr/~kopanak/Sources/pattern_vis_review.pdf, 2006.
I. Kopanakis and B. Theodoulidis. Visual data mining modeling techniques for the visualization of mining outcomes. Journal of Visual Languages and Computing, 14(6):543–589, 2003.
M.-J. Kraak. The space-time cube revisited from a geovisualization perspective. In Proceedings of the 21st International Cartographic Conference (ICC’03), pp. 1988–1995, 2003.
Y. Kurata and M.J. Egenhofer. Structure and semantics of arrow diagrams. In Proceedings of Conference On Spatial Information Theory (COSIT’05), pp. 232–250, 2005.
M.-P. Kwan and J. Lee. Geovisualization of human activity patterns using 3D GIS: A time-geographic approach. In Spatially Integrated Social Science. Oxford University Press, 2004.
P. Laube, S. Imfeld, and R. Weibel. Discovering relative motion patterns in groups of moving point objects. International Journal of Geographical Information Science, 19(6):639–668, 2005.
H. Miller. Modeling accessibility using space-time prism concepts within geographical information systems: Fourteen years. In Classics of International Journal of Geographical Information Science, pp. 177–182. CRC Press, 2006.
D. Mountain. Exploring Mobile Trajectories: An Investigation of Individual Spatial Behavior and Geographic Filters for Information Retrieval. Dissertation, City University, London, 2005.
D. Mountain. Visualizing, querying and summarizing individual spatio-temporal behaviour. In Exploring Geovisualization, pp. 181–200. Elsevier, 2005.
D. Mountain and J. Dykes. What I did on my vacation: Spatio-temporal log analysis with interactive graphics and morphometric surface derivatives. In Proceedings of The GIS Research UK (GISRUK’02), 2002.
D. Mountain and J. Raper. Modelling human spatio-temporal behaviour: A challenge for location-based services. In Proceedings of 6th International Conference on Geocomputation, 2001.
C. Newton. Graphics: from alpha to omega in data analysis. In Graphical Representation of Multivariate Data, pp. 59–92. Academic Press, 1978.
C. North and B. Schneiderman. A Taxonomy of Multiple Window Coordinations. Technical Report CS-TR-3854, 1997.
J.C. Roberts. On encouraging multiple views for visualisation. In Information Visualization. IEEE Computer Society, 1998.
B. Shneiderman. The eyes have it: A task by data type taxonomy for information visualizations. In IEEE Visual Languages, Number UMCP-CSD CS-TR-3665, pp. 336–343, 1996.
T. Slocum, R. MacMaster, F. Kessler, and H. Howard. Thematic Cartography and Geographic Visualization. Prentice Hall, 2005.
R. Spence and L. Tweedie. The attribute explorer: Information synthesis via exploration. Interacting with Computers, 11(2):137–146, 1998.
S.-O. Tergan and T. Keller. Knowledge and Information Visualization: Searching for Synergies. Springer, 2005.
J. Thomas and K. Cook. Illuminating the Path. The Research and Development Agenda for Visual Analytics. IEEE Computer Society, 1983.
W. Tobler. Experiments in migration mapping by computer. The American Cartographer, 14(2):155–163, 1987.
W. Tobler. Display and Analysis of Migration Tables. http://www.geog.ucsb.edu/~tobler/presentations/shows/A_Flow_talk.htm, 2005.
B. Tversky, J.B. Morrison, and M. Bétrancourt. Animation: Can it facilitate? International Journal Human-Computer Studies, 57(4):247–262, 2002.
L. Wilkinson. The grammar of graphics. Springer-Verlag, 1999.
H. Yu. Spatial-temporal gis design for exploring interactions of human activities. Cartography and Geographic Information Science, 33(1):3–19, 2006.
K. Zhao and B. Liu. Visual analysis of the behavior of discovered rules. In Proceeding of Workshop on Visual Data Mining (VDM’01), pp. 59–64, 2001.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Andrienko, G., Andrienko, N., Kopanakis, I., Ligtenberg, A., Wrobel, S. (2008). Visual Analytics Methods for Movement Data. In: Giannotti, F., Pedreschi, D. (eds) Mobility, Data Mining and Privacy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75177-9_14
Download citation
DOI: https://doi.org/10.1007/978-3-540-75177-9_14
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-75176-2
Online ISBN: 978-3-540-75177-9
eBook Packages: Computer ScienceComputer Science (R0)