Abstract
For a cognitive account of reasoning it is useful to factor out the syntactic aspect — the aspect that has to do with pattern matching and simple substitution — from the rest. The calculus of monotonicity, alias the calculus of natural logic, does precisely this, for it is a calculus of appropriate substitutions at marked positions in syntactic structures. We first introduce the semantic and the syntactic sides of monotonicity reasoning or ‘natural logic’, and propose an improvement to the syntactic monotonicity calculus, in the form of an improved algorithm for monotonicity marking. Next, we focus on the role of monotonicity in syllogistic reasoning. In particular, we show how the syllogistic inference rules (for traditional syllogistics, but also for a broader class of quantifiers) can be decomposed in a monotonicity component, an argument swap component, and an existential import component. Finally, we connect the decomposition of syllogistics to the doctrine of distribution.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Barwise, J., Cooper, R.: Generalized quantifiers and natural language. Linguistics and Philosophy 4, 159–219 (1981)
Battaglini, F.: Monotonicity and cognition. Manuscript, Uil-OTS, Utrecht (2006)
van Benthem, J.: Questions about quantifiers. Journal of Symbolic Logic 49, 443–466 (1984)
van Benthem, J.: Essays in Logical Semantics. Reidel, Dordrecht (1986)
van Benthem, J.: Language in Action: categories, lambdas and dynamic logic. Studies in Logic 130. Elsevier, Amsterdam (1991)
Bernardi, R.: Reasoning with Polarity in Categorial Type Logic. PhD thesis, Uil-OTS, Utrecht University (2002)
Chater, N., Oaksford, M.: The probability heuristics model of syllogistic reasoning. Cognitive Psychology 38, 191–258 (1999)
Dowty, D.: Negative polarity and concord marking in natural language reasoning. In: SALT Proceedings (1994)
van Eijck, J.: Generalized quantifiers and traditional logic. In: van Benthem, J., ter Meulen, A. (eds.) Generalized Quantifiers, Theory and Applications, Foris, Dordrecht (1985)
van Eijck, J.: Syllogistics = monotonicity + symmetry + existential import. Technical Report SEN-R0512, CWI, Amsterdam (July 2005), available from http://db.cwi.nl/rapporten/
Englebretsen, G.: Notes on the new syllogistic. Logique et Analyse 85–86, 111–120 (1979)
Fellbaum, C.: Wordnet, an electronic lexical database. MIT Press, Cambridge (1998)
Fyodorov, Y., Winter, Y., Francez, N.: Order-based inference in natural logic. Logic Journal of the IGPL 11, 385–416 (2003)
Geurts, B.: Reasoning with quantifiers. Cognition 86, 223–251 (2003)
Geurts, B., van der Slik, F.: Monotonicity and processing load. Journal of Semantics 22, 97–117 (2005)
Hodges, W.: The laws of distribution for syllogisms. Notre Dame Journal of Formal Logic 39, 221–230 (1998)
Johnson-Laird, P.N.: Mental Models; towards a cognitive science of language, inference and consciousness. Cambridge University Press, Cambridge (1983)
Mostowski, A.: On a generalization of quantifiers. Fundamenta Mathematica 44, 12–36 (1957)
Pratt-Hartmann, I.: Fragments of language. Journal of Logic, Language and Information 13(2), 207–223 (2004)
Prior, A.N.: Traditional logic. In: Edwards, P. (ed.) The Encyclopedia of Philosophy, vol. 5, pp. 34–45. Macmillan, NYC (1967)
Purdy, W.C.: A logic for natural language. Notre Dame Journal of Formal Logic 32, 409–425 (1991)
Sánchez, V.: Studies on Natural Logic and Categorial Grammar. PhD thesis, University of Amsterdam (1991)
Sommers, F.: The Logic of Natural Language. Cambridge University Press, Cambridge (1982)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
van Eijck, J. (2007). Natural Logic for Natural Language. In: ten Cate, B.D., Zeevat, H.W. (eds) Logic, Language, and Computation. TbiLLC 2005. Lecture Notes in Computer Science(), vol 4363. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75144-1_16
Download citation
DOI: https://doi.org/10.1007/978-3-540-75144-1_16
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-75143-4
Online ISBN: 978-3-540-75144-1
eBook Packages: Computer ScienceComputer Science (R0)