[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Natural Logic for Natural Language

  • Conference paper
Logic, Language, and Computation (TbiLLC 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4363))

Included in the following conference series:

Abstract

For a cognitive account of reasoning it is useful to factor out the syntactic aspect — the aspect that has to do with pattern matching and simple substitution — from the rest. The calculus of monotonicity, alias the calculus of natural logic, does precisely this, for it is a calculus of appropriate substitutions at marked positions in syntactic structures. We first introduce the semantic and the syntactic sides of monotonicity reasoning or ‘natural logic’, and propose an improvement to the syntactic monotonicity calculus, in the form of an improved algorithm for monotonicity marking. Next, we focus on the role of monotonicity in syllogistic reasoning. In particular, we show how the syllogistic inference rules (for traditional syllogistics, but also for a broader class of quantifiers) can be decomposed in a monotonicity component, an argument swap component, and an existential import component. Finally, we connect the decomposition of syllogistics to the doctrine of distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Barwise, J., Cooper, R.: Generalized quantifiers and natural language. Linguistics and Philosophy 4, 159–219 (1981)

    Article  MATH  Google Scholar 

  2. Battaglini, F.: Monotonicity and cognition. Manuscript, Uil-OTS, Utrecht (2006)

    Google Scholar 

  3. van Benthem, J.: Questions about quantifiers. Journal of Symbolic Logic 49, 443–466 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  4. van Benthem, J.: Essays in Logical Semantics. Reidel, Dordrecht (1986)

    MATH  Google Scholar 

  5. van Benthem, J.: Language in Action: categories, lambdas and dynamic logic. Studies in Logic 130. Elsevier, Amsterdam (1991)

    MATH  Google Scholar 

  6. Bernardi, R.: Reasoning with Polarity in Categorial Type Logic. PhD thesis, Uil-OTS, Utrecht University (2002)

    Google Scholar 

  7. Chater, N., Oaksford, M.: The probability heuristics model of syllogistic reasoning. Cognitive Psychology 38, 191–258 (1999)

    Article  Google Scholar 

  8. Dowty, D.: Negative polarity and concord marking in natural language reasoning. In: SALT Proceedings (1994)

    Google Scholar 

  9. van Eijck, J.: Generalized quantifiers and traditional logic. In: van Benthem, J., ter Meulen, A. (eds.) Generalized Quantifiers, Theory and Applications, Foris, Dordrecht (1985)

    Google Scholar 

  10. van Eijck, J.: Syllogistics = monotonicity + symmetry + existential import. Technical Report SEN-R0512, CWI, Amsterdam (July 2005), available from http://db.cwi.nl/rapporten/

  11. Englebretsen, G.: Notes on the new syllogistic. Logique et Analyse 85–86, 111–120 (1979)

    Google Scholar 

  12. Fellbaum, C.: Wordnet, an electronic lexical database. MIT Press, Cambridge (1998)

    MATH  Google Scholar 

  13. Fyodorov, Y., Winter, Y., Francez, N.: Order-based inference in natural logic. Logic Journal of the IGPL 11, 385–416 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  14. Geurts, B.: Reasoning with quantifiers. Cognition 86, 223–251 (2003)

    Article  Google Scholar 

  15. Geurts, B., van der Slik, F.: Monotonicity and processing load. Journal of Semantics 22, 97–117 (2005)

    Article  Google Scholar 

  16. Hodges, W.: The laws of distribution for syllogisms. Notre Dame Journal of Formal Logic 39, 221–230 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  17. Johnson-Laird, P.N.: Mental Models; towards a cognitive science of language, inference and consciousness. Cambridge University Press, Cambridge (1983)

    Google Scholar 

  18. Mostowski, A.: On a generalization of quantifiers. Fundamenta Mathematica 44, 12–36 (1957)

    MathSciNet  Google Scholar 

  19. Pratt-Hartmann, I.: Fragments of language. Journal of Logic, Language and Information 13(2), 207–223 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  20. Prior, A.N.: Traditional logic. In: Edwards, P. (ed.) The Encyclopedia of Philosophy, vol. 5, pp. 34–45. Macmillan, NYC (1967)

    Google Scholar 

  21. Purdy, W.C.: A logic for natural language. Notre Dame Journal of Formal Logic 32, 409–425 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  22. Sánchez, V.: Studies on Natural Logic and Categorial Grammar. PhD thesis, University of Amsterdam (1991)

    Google Scholar 

  23. Sommers, F.: The Logic of Natural Language. Cambridge University Press, Cambridge (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Balder D. ten Cate Henk W. Zeevat

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

van Eijck, J. (2007). Natural Logic for Natural Language. In: ten Cate, B.D., Zeevat, H.W. (eds) Logic, Language, and Computation. TbiLLC 2005. Lecture Notes in Computer Science(), vol 4363. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75144-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75144-1_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75143-4

  • Online ISBN: 978-3-540-75144-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics