Abstract
This paper presents an efficient method of obstacle recognition system and HRI (human robot interaction) system specialized for biped walking robot. This method transmits the information regarding obstacle conditions to a biped walking robot. In the present paper, we describe a cascade of boosted classifier using adaboost algorithm as a obstacle region extracting module from input images. Besides, PCA is applied as a feature extracting module from the obstacle region and a hierarchical support vector machine is applied as an obstacle recognizing module. The data from vision system is combined with information from other sensors and the walking assist commands transmit to the biped walking robot. From the results of experiments, the proposed method can be applied to biped walking robot effectively.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Fu, S., Li, W., Zhang, Y., Liang, Z., Hou, Z., Tan, M., Ye, W., Lian, B., Zuo, Q.: Structure- Constrained Obstacles Recognition for Power Transmission Line Inspection Robot. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3363–3368. IEEE, Los Alamitos (2006)
Moore, D., Essa, I., Hayes, M.: Exploiting Human Actions and Object Context for Recognition Tasks. In: Proceedings of IEEE International Conference on Computer Vision, pp. 20–27. IEEE Computer Society Press, Los Alamitos (1999)
Lowe, D.G.: Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer Vision 60, 91–110 (2004)
Mitani, M., Takaya, M., Kojima, A., Fukunaga, K.: Environment Recognition Based on Analysis of Human Actions for Mobile Robot. In: Proceedings of IEEE International Conference on Pattern Recognition, vol. 4, pp. 782–786. IEEE, Los Alamitos (2006)
Takagi, K., Morikawa, K., Ogawa, T., Saburi, M.: Road Environment Recognition Using On-vehicle LIDAR. In: Proceedings of Intelligent Vehicles Symposium, pp. 13–15 (2006)
Cortes, C., Vapnik, V.: Support-vector Networks. Machine Learning 20, 1–25 (1995)
Lienhart, R., Maydt, J.: An Extended Set of Haar-like Features for Rapid Object Detection. In: Proceedings of IEEE International Conference on Image Processing, vol. 137, pp. 900–903. IEEE, Los Alamitos (2002)
Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 511–518. IEEE, Los Alamitos (2001)
Jolliffe, I.T.: Principal Component Analysis. Springer, New-York (1986)
Muller, K.R., Mika, S., Ratsch, G., Tsuda, K., Scholkopf, B.: An Introduction to Kernel-Based Learning Algorithms. IEEE Transactions on Neural Networks 12, 181–201 (2001)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kang, TK., Kim, D., Park, GT. (2007). Implementation of Vision Based Walking Assistant System for Biped Robot. In: Apolloni, B., Howlett, R.J., Jain, L. (eds) Knowledge-Based Intelligent Information and Engineering Systems. KES 2007. Lecture Notes in Computer Science(), vol 4694. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74829-8_9
Download citation
DOI: https://doi.org/10.1007/978-3-540-74829-8_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-74828-1
Online ISBN: 978-3-540-74829-8
eBook Packages: Computer ScienceComputer Science (R0)