Abstract
Learning behaviors of the hierarchical structure learning automata (HSLA) with the three representative algorithms under the nonstationary multiteacher environments are considered. Several computer simulations confirm the effectiveness of the newly developed relative reward strength algorithm (NRRSA).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Varshavskii, V.I., Vorontsova, I.P.: On the behavior of stochastic automata with variable structure. Automation and Remote Control 24, 327–333 (1963)
Baba, N.: New Topics in Learning Automata Theory and Applications. Springer, Heidelberg (1985)
Narendra, K.S., Thathachar, M.A.L.: Learning Automata: An Introduction. Prentice-Hall, Englewood Cliffs, NJ (1989)
Thathachar, M.A.L., Ramakrishnan, K.R.: A hierarchical system of learning automata. IEEE Trans. Syst. Man, Cybern. SMC-11, 236–241 (1981)
Baba, N., Sawaragi, Y.: On the learning behavior of stochastic automata under a nonstationary random environment. IEEE Trans. Syst. Man, Cybern. SMC-5, 273–275 (1975)
Srikantakumar, P.R., Narendra, K.S.: A learning model for routing in telephone networks. SIAM Journal on Control and Optimization 20, 34–57 (1982)
Simha, R., Kurose, J.F.: Relative reward strength algorithms for learning automata. IEEE Trans. Syst. Man, Cybern. 19, 388–398 (1989)
Agache, M., Oommen, B.J.: Generalized pursuit learning scheme: New families of continuous and discretized learning automata. IEEE Trans. Syst. Man, Cybern. B 32, 738–749 (2002)
Baba, N., Mogami, Y.: A new learning algorithm for the hierarchical structure learning automata operating in the nonstationary S-model random environment. IEEE Trans. Syst. Man, Cybern. B 32, 750–758 (2002)
Papadimitriou, G.I., Sklira, M., Pomportsis, A.S.: [10] Papadimitriou, G. IEEE Trans. Syst. Man, Cybern. B 34, 246–254 (2004)
Baba, N., Mogami, Y.: A relative reward-strength algorithm for the hierarchical structure learning automata operating in the general nonstationary multiteache environment. IEEE Trans. Syst. Man, Cybern. B 36, 781–794 (2006)
Baba, N., Mogami, Y.: Hierarchical structure learning automata and their applications to the intelligent behavior of the mobile robots in a maze. In: Proceedings of the ISME2007, T04 Waseda Univ. Kitakyushu (2006)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Baba, N., Mogami, Y. (2007). A Consideration on the Learning Performances of the Hierarchical Structure Learning Automata (HSLA) Operating in the General Nonstationary Multiteacher Environment. In: Apolloni, B., Howlett, R.J., Jain, L. (eds) Knowledge-Based Intelligent Information and Engineering Systems. KES 2007. Lecture Notes in Computer Science(), vol 4694. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74829-8_11
Download citation
DOI: https://doi.org/10.1007/978-3-540-74829-8_11
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-74828-1
Online ISBN: 978-3-540-74829-8
eBook Packages: Computer ScienceComputer Science (R0)