[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Consideration on the Learning Performances of the Hierarchical Structure Learning Automata (HSLA) Operating in the General Nonstationary Multiteacher Environment

  • Conference paper
Knowledge-Based Intelligent Information and Engineering Systems (KES 2007)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4694))

  • 1221 Accesses

Abstract

Learning behaviors of the hierarchical structure learning automata (HSLA) with the three representative algorithms under the nonstationary multiteacher environments are considered. Several computer simulations confirm the effectiveness of the newly developed relative reward strength algorithm (NRRSA).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 103.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Varshavskii, V.I., Vorontsova, I.P.: On the behavior of stochastic automata with variable structure. Automation and Remote Control 24, 327–333 (1963)

    Google Scholar 

  2. Baba, N.: New Topics in Learning Automata Theory and Applications. Springer, Heidelberg (1985)

    MATH  Google Scholar 

  3. Narendra, K.S., Thathachar, M.A.L.: Learning Automata: An Introduction. Prentice-Hall, Englewood Cliffs, NJ (1989)

    Google Scholar 

  4. Thathachar, M.A.L., Ramakrishnan, K.R.: A hierarchical system of learning automata. IEEE Trans. Syst. Man, Cybern. SMC-11, 236–241 (1981)

    Google Scholar 

  5. Baba, N., Sawaragi, Y.: On the learning behavior of stochastic automata under a nonstationary random environment. IEEE Trans. Syst. Man, Cybern. SMC-5, 273–275 (1975)

    Google Scholar 

  6. Srikantakumar, P.R., Narendra, K.S.: A learning model for routing in telephone networks. SIAM Journal on Control and Optimization 20, 34–57 (1982)

    Article  MATH  Google Scholar 

  7. Simha, R., Kurose, J.F.: Relative reward strength algorithms for learning automata. IEEE Trans. Syst. Man, Cybern. 19, 388–398 (1989)

    Article  Google Scholar 

  8. Agache, M., Oommen, B.J.: Generalized pursuit learning scheme: New families of continuous and discretized learning automata. IEEE Trans. Syst. Man, Cybern. B 32, 738–749 (2002)

    Article  Google Scholar 

  9. Baba, N., Mogami, Y.: A new learning algorithm for the hierarchical structure learning automata operating in the nonstationary S-model random environment. IEEE Trans. Syst. Man, Cybern. B 32, 750–758 (2002)

    Article  Google Scholar 

  10. Papadimitriou, G.I., Sklira, M., Pomportsis, A.S.: [10] Papadimitriou, G. IEEE Trans. Syst. Man, Cybern. B 34, 246–254 (2004)

    Article  Google Scholar 

  11. Baba, N., Mogami, Y.: A relative reward-strength algorithm for the hierarchical structure learning automata operating in the general nonstationary multiteache environment. IEEE Trans. Syst. Man, Cybern. B 36, 781–794 (2006)

    Article  Google Scholar 

  12. Baba, N., Mogami, Y.: Hierarchical structure learning automata and their applications to the intelligent behavior of the mobile robots in a maze. In: Proceedings of the ISME2007, T04 Waseda Univ. Kitakyushu (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Bruno Apolloni Robert J. Howlett Lakhmi Jain

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Baba, N., Mogami, Y. (2007). A Consideration on the Learning Performances of the Hierarchical Structure Learning Automata (HSLA) Operating in the General Nonstationary Multiteacher Environment. In: Apolloni, B., Howlett, R.J., Jain, L. (eds) Knowledge-Based Intelligent Information and Engineering Systems. KES 2007. Lecture Notes in Computer Science(), vol 4694. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74829-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74829-8_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74828-1

  • Online ISBN: 978-3-540-74829-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics