[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

APD-A Tool for Identifying Behavioural Patterns Automatically from Clickstream Data

  • Conference paper
Knowledge-Based Intelligent Information and Engineering Systems (KES 2007)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4693))

Abstract

Clickstream can be a rich source of data for analysing user behaviour, but the volume of these logs makes it difficult to identify and categorise behavioural patterns. In this paper, we introduce the Automatic Pattern Discovery (APD) method, a technique for automated processing of Clickstream data to identify a user’s browsing patterns. The paper also includes case study that is used to illustrate the use of the APD and to evaluate its performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Canter, D., Rivers, R., Storrs, G.: Characterising users navigation through complex data structures. Behaviour and Information Technology 4(2), 93–102 (1985)

    Article  Google Scholar 

  2. Chi, E.H.: Improving web usability through visualisation IEEE Internet Computing, March-April 2002, pp. 64–71 (2002)

    Google Scholar 

  3. Clark, L., Ting, I., Kimble, C., Wright, P., Kudenko, D.: Combining Ethnographic and Clickstream Data to Identify Browsing Strategies Information Research 11(2), paper 249 (2006), Available at http://InformationR.net/ir/11-2/paper249.html

  4. Cooley, R., Mobasher, B., Srivastava, J.: Data Preparation for Mining World Wide Web Browsing Patterns. Journal of Knowledge and Information System 1(1), 5–32 (1999)

    Article  Google Scholar 

  5. Cooley, R., Tan, P.N., Srivastava, J.: Discovery of Interesting Usage Patterns from Web Data, LNCS Vol. In: Masand, B., Spiliopoulou, M. (eds.) Web Usage Analysis and User Profiling. LNCS (LNAI), vol. 1836, pp. 163–182. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  6. Eick, S.G.: Visual Analysis of Website Browsing Patterns. In: Borner, K., Chen, C. (eds.) Visual Interface to Digital Libraries, pp. 65–77 (2002)

    Google Scholar 

  7. Ezeife, C.I., Lu, Y.: Mining Web Log Sequential Patterns with Position Coded Pre-Order Linked WAP-Tree, Data Mining and Knowledge Discovery, 10, 5–38 (2005)

    Google Scholar 

  8. Ting, I.H., Kimble, C., Kudenko, D.: Visualising and Classifying the Pattern of User’s Browsing Behaviour for Website Design Recommendation. In: Paper presented at the International Workshop on Knowledge Discovery in Data Stream, Pisa, Italy, vol. 24, pp. 101–102 (September 2004)

    Google Scholar 

  9. Ting, I.H., Kimble, C., Kudenko, D.: A Pattern Restore Method for Restoring Missing Patterns in Server Side Clickstream Data. In: Zhang, Y., Tanaka, K., Yu, J.X., Wang, S., Li, M. (eds.) APWeb 2005. LNCS, vol. 3399, pp. 501–512. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  10. Xing, D., Shen, J.: Efficient Data Mining for Web Navigation Patterns. Information and Software Technology 46(1), 55–63 (2004)

    Article  Google Scholar 

  11. Yen, S.J., Lee, Y.S.: An Efficient Data Mining Algorithm for Discovering Web Access Patterns, In Zhou, X. In: Zhou, X., Zhang, Y., Orlowska, M.E. (eds.) APWeb 2003. LNCS, vol. 2642, pp. 187–192. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ting, IH., Clark, L., Kimble, C., Kudenko, D., Wright, P. (2007). APD-A Tool for Identifying Behavioural Patterns Automatically from Clickstream Data. In: Apolloni, B., Howlett, R.J., Jain, L. (eds) Knowledge-Based Intelligent Information and Engineering Systems. KES 2007. Lecture Notes in Computer Science(), vol 4693. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74827-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74827-4_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74826-7

  • Online ISBN: 978-3-540-74827-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics