Abstract
The semantic informations extracted from traffic scenes are proposed to enhance the capacity of on-the-shelf navigation systems and made more suitable for autonomous vehicles. The additional classifications of essential traffic informations and estimation of the driving visibility are the basis for making decision to navigation tasks. Furthermore, the semantic structure can be also supporting to the behaviour-based networks and traffic scene interpretations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
SiemensVDO, http://www.siemensvdo.com/
Volkswagen of America, Inc, http://www.vwerl.com
S. Vacek, S. Bergmann, U. Mohr and R. Dillmann, Fusing image features and navigation system data for augmenting guiding information displays, In Proc. of IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, Heidelberg, Germany, 2006.
DARPA, Urban Challenge 2007, http://www.darpa.mil/grandchallenge/.
W. Fastenmeier, Autofahrer und Verkehrssituation, TUV Rheinland, 1995.
N. Hautière, R. Labayrade and D. Aubert, Estimation of the Visibility Distance by Stereovision: a Generic Approach, Conference on Machine Vision Applications, Tsukuba, Japan, 2005.
N. Hautière, R. Labayrade and D. Aubert, Detection of Visibility Conditions through use of Onboard Cameras, In Proc. of Intelligent Vehicles Symposium, Las Vegas, USA, 2005.
H. Kurihata, T. Takahashi, I. Ide, Y. Mekada, H. Murase, Y. Tamatsu and T. Miyahara, Rainy Weather Recognition from In-Vehicle Camera Images for Driver Assistance, In Proc. of Intelligent Vehicles Symposium, Las Vegas, USA, 2005
K. Mori, T. Kato, T. Takahashi, I. Ide and H. Murase, Visibility Estimation in Foggy Conditions by In-vehicle Camera and Radar, In the 1st International Conference on Innovative Computing, Information and Control, Beijing, China, 2006.
Forschungszentrum Informatik Karlsruhe (IDS), Modular Controller Architecture Version 2 (MCA2), http://www.mca2.org/
J. Schröder, U. Müller and R. Dillmann, Smart Roadster Project: Setting up Drive-by-Wire or How to Remote-Control your Car, In Proc. of the 9th International Conference on Intelligent Autonomous Systems, Tokyo, Japan, 2006.
D. Alrutz, W. Angenendt, W. Draeger and D. Gündel, Verkehrssicherheit in Einbahnstraßen mit gegengerichtetem Radverkehr, Straßenverkehrstechnik, 2002.
R.C. Arkins, Behavior-Based Robotics, MIT Press, 1998
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kumpakeaw, S., Dillmann, R. (2007). Semantic Road Maps for Autonomous Vehicles. In: Berns, K., Luksch, T. (eds) Autonome Mobile Systeme 2007. Informatik aktuell. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74764-2_32
Download citation
DOI: https://doi.org/10.1007/978-3-540-74764-2_32
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-74763-5
Online ISBN: 978-3-540-74764-2
eBook Packages: Computer Science and Engineering (German Language)