[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Algebraic Geometric Study of Exchange Monte Carlo Method

  • Conference paper
Artificial Neural Networks – ICANN 2007 (ICANN 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4668))

Included in the following conference series:

  • 2755 Accesses

Abstract

In hierarchical learning machines such as neural networks, Bayesian learning provides better generalization performance than maximum likelihood estimation. However, its accurate approximation using Markov chain Monte Carlo (MCMC) method requires huge computational cost. The exchange Monte Carlo (EMC) method was proposed as an improved algorithm of MCMC method. Although its effectiveness has been shown not only in Bayesian learning but also in many fields, the mathematical foundation of EMC method has not yet been established. In this paper, we clarify the asymptotic behavior of symmetrized Kullback divergence and average exchange ratio, which are used as criteria for designing the EMC method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Atiyah, M.F.: Resolution of singularities and division of distributions. Communications of Pure and Applied Mathematics 13, 145–150 (1970)

    Article  Google Scholar 

  2. Berg, B.A., Neuhaus, T.: Multicanonical algorithms for first order phase transitions. Physics Letter B 267(2), 249–253 (1991)

    Article  Google Scholar 

  3. Hukushima, K.: Domain Wall Free Energy of Spin Glass Models: Numerical Method and Boundary Conditions. Physical Review E 60, 3606–3613 (1999)

    Article  Google Scholar 

  4. Hukushima, K., Nemoto, K.: Exchange Monte Carlo Method and Application to Spin Glass Simulations. Journal of Physical Society of Japan 65(6), 1604–1608 (1996)

    Article  Google Scholar 

  5. Hukushima, K.: Extended ensemble Monte Carlo approach to hardly relaxing problems. Computer Physics Communications 147, 77–82 (2002)

    Article  MATH  Google Scholar 

  6. Iba, Y.: Extended Ensemble Monte Carlo. International Journal of Modern Physics C 12, 623–656 (2001)

    Article  Google Scholar 

  7. Liang, F.: An effective Bayesian neural network classifier with a comparison study to support vector machine. Neural Computation 15, 1959–1989 (2003)

    Article  MATH  Google Scholar 

  8. Marinari, E., Parisi, G.: Simulated tempering: a new Monte Carlo scheme. Europhysics Letters 19(6), 451–455 (1992)

    Article  Google Scholar 

  9. Nagata, K., Watanabe, S.: Analysis of Exchange Ratio for Exchange Monte Carlo Method. In: FOCI’07. Proc. of The First IEEE Symposium on Foundation of Computational Intelligence, pp. 434–439. IEEE Computer Society Press, Los Alamitos (2007)

    Google Scholar 

  10. Pinn, K., Wieczerkowski, C.: Number of Magic Squares from Parallel Tempering Monte Carlo. International Journal of modern Physics 9(4), 541–546 (1998)

    Article  Google Scholar 

  11. Sugita, Y., Okamoto, Y.: Replica-exchange molecular dynamics method for protein folding. Chemical Physics Letters 314(1-2), 141–151 (1999)

    Article  Google Scholar 

  12. Watanabe, S.: Algebraic Analysis for Nonidentifiable Learning Machines. Neural Computation 13, 899–933 (2001)

    Article  MATH  Google Scholar 

  13. Yamazaki, K., Watanabe, S.: Singularities in mixture models and upper bounds of stochastic complexity. Neural networks 16(7), 1029–1038 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Joaquim Marques de Sá Luís A. Alexandre Włodzisław Duch Danilo Mandic

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nagata, K., Watanabe, S. (2007). Algebraic Geometric Study of Exchange Monte Carlo Method. In: de Sá, J.M., Alexandre, L.A., Duch, W., Mandic, D. (eds) Artificial Neural Networks – ICANN 2007. ICANN 2007. Lecture Notes in Computer Science, vol 4668. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74690-4_70

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74690-4_70

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74689-8

  • Online ISBN: 978-3-540-74690-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics