[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Self-organizing Maps with Refractory Period

  • Conference paper
Artificial Neural Networks – ICANN 2007 (ICANN 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4669))

Included in the following conference series:

Abstract

Self-organizing map (SOM) has been studied as a model of map formation in the brain cortex. Neurons in the cortex present a refractory period in which they are not able to be activated, restriction that should be included in the SOM if a better description is to be achieved. Altough several works have been presented in order to include this biological restriction to the SOM, they do not reflect biological plausibility. Here, we present a modification in the SOM that allows neurons to enter a refractory period (SOM-RP) if they are the best matching unit (BMU) or if they belong to its neighborhood. This refractory period is the same for all affected neurons, which contrasts with previous models. By including this biological restriction, SOM dynamics resembles in more detail behavior shown by the cortex, such as non-radial activity patterns and long distance influence, besides the refractory period. As a side effect, two error measures are lower in maps formed by SOM-RP than in those formed by SOM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cottrell, M., Fort, J.C., Pagés, G.: Theoretical aspects of the SOM algorithm. Neurocomputing 21, 119–138 (1998)

    Article  MATH  Google Scholar 

  2. Kohonen, T.: Self-Organizing maps, 3rd edn. Springer, Heidelberg (2000)

    Google Scholar 

  3. Ritter, H.: Self-Organizing Maps on non-euclidean Spaces Kohonen Maps. In: Oja, E., Kaski, S. (eds.), pp. 97–108 (1999)

    Google Scholar 

  4. Erwin Obermayer, K. Schulten, K. Self-organizing maps: Ordering, convergence properties and energy functions. Biol. Cyb. 67 (1992) 47-55.

    Article  MATH  Google Scholar 

  5. Mayer, N., Herrmann, J., Geisel, T.: Retinotopy and spatial phase in topographic maps. Neurocomputing, 32–33, 447–452 (2000)

    Google Scholar 

  6. Bednar, J., Kelkar, A., Miikkulainen, R.: Scaling self-organizing maps to model large cortical networks. Neuroinformatics (2004)

    Google Scholar 

  7. Kohonen, T.: Self-organizing neural projections. Neural Networks 19, 723–733 (2006)

    Google Scholar 

  8. Liljeholm, M., Lin, A., Ozdzynski, P., Beatty, J.: Quantitative analysis of kernel properties in Kohonen’s self-organizing map algorithm: Gaussian and difference of Gaussians neighborhoods. Neurocomputing, 44–46, 515–520 (2002)

    Google Scholar 

  9. Goodhill, G., Finch, S., Sejnowski, T.: Quantifying neighborhood preservation in topographic maps. 3rd. Joint Symp. in neural comp., pp. 61–82 (1996)

    Google Scholar 

  10. Kiviluoto, K.: Topology preservation in Self-Organizing maps. In: Proc. ICNN96, IEEE Int. Conf. on Neural Networks, IEEE Computer Society Press, Los Alamitos (1996)

    Google Scholar 

  11. Bauer, H., Herrmann, M., Villmann, T.: Neural maps and topographic vector quantization. Neural networks 12, 659–676 (1999)

    Article  Google Scholar 

  12. Claussen, J.: Winner-relaxing self-organizing maps. Neural computation 17, 996–1009 (2006)

    Article  Google Scholar 

  13. Thompson, R.: The brain: a neuroscience primer. Worth pub. (2000).

    Google Scholar 

  14. Koch, C.: Biophysics of computation and information processing in single neurons. Oxford University press, New York (1998)

    Google Scholar 

  15. Koulakov, A., Chklovsky, D.: Orientation preference patterns in mammalian visual cortex: a wire length minimization approach. Neuron 29, 519–527 (2001)

    Article  Google Scholar 

  16. Goodhill, G., Cimponeriu, A.: Analysis of the elastic net model applied to the formation of ocular dominance and orientation columns. Network: comput. neural systems 11, 153–168 (2000)

    Article  MATH  Google Scholar 

  17. Lee, J., Verleysen, M.: Self-organizing maps with recursive neighborhood adaption. Neural Networks 15, 993–1003 (2002)

    Article  Google Scholar 

  18. Neme, A., Miramontes, P.A: parameter in the SOM learning rule that incorporates activation frequency. ICANN 1, 455–463 (2006)

    Google Scholar 

  19. Principe, J., Euliano, N., Garani, S.: Principles and networks for self-organization in space-time. Neural Networks 15, 1069–1083 (2002)

    Article  Google Scholar 

  20. Chappell, G., Taylor, J.: The temporal Kohonen map. Neural Networks 6, 441–445 (1993)

    Article  Google Scholar 

  21. Sporns, O., Chialvo, D., Kaiser, M., Hilgetag, C.: Organization, development and function of complex brain networks. Trens in cognitive sciences. 8, 418–425 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Joaquim Marques de Sá Luís A. Alexandre Włodzisław Duch Danilo Mandic

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Neme, A., Mireles, V. (2007). Self-organizing Maps with Refractory Period. In: de Sá, J.M., Alexandre, L.A., Duch, W., Mandic, D. (eds) Artificial Neural Networks – ICANN 2007. ICANN 2007. Lecture Notes in Computer Science, vol 4669. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74695-9_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74695-9_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74693-5

  • Online ISBN: 978-3-540-74695-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics