Abstract
In our paper we examine the usage prosodic features in speech recognition, with a special attention payed to agglutinating and fixed stress languages. The used prosodic features, acoustic-prosodic pre-processing, and segmentation in terms of prosodic units are presented in details. We use the expression ”prosodic unit” in order to make a difference from prosodic phrases, which are longer. We trained a HMM-based prosodic segmenter reliing on fundamental frequency and intensity of speech. The output of the prosodic segmenter is used for N-best lattice rescoring in parallel with a simplified bigram language model in a continuous speech recognizer, in order to improve speech recognition performance. Experiments for Hungarian language show a WER reduction of about 4% using a simple lattice rescoring.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Veilleux, N.M., Ostendorf, M.: Prosody/parse scoring and its application in ATIS. In: Human Language and Technology. In: Proceedings of the ARPA workshop, Plainsboro, pp. 335–340 (1993)
Kompe, R., Kiessling, A., Niemann, H., Nöth, H., Schukat-Talamazzini, E.G., Zottman, A., Batliner, A.: Prosodic scoring of word hypothesis graphs. In: Procs. of the European Conference on Speech Communication and Technology. Madrid, pp. 1333–1336 (1995)
Gallwitz, F., Niemann, H., Nöth, E., Warnke, V.: Integrated recognition of words and prosodic phrase boundaries. In: Speech Communication, vol. 36, pp. 81–95 (2002)
Vicsi, K., Szaszák, G.Y.: Automatic Segmentation of Continuous Speech on Word Level Based on Supra-segmental Features. International Journal of Speech Technology 8(4), 363–370 (2005)
Sjölander, K., Beskow, J.: Wavesurfer - an open source speech tool. In: Procs. ICSLP 2000. Beijing, China, vol. 4. pp. 464–467 (2000)
Roach, P.: BABEL: An Eastern European multi-language database. In: Procs. of ICSLP 1996. Philadelphia (1996)
Hungarian Reference Database: http://alpha.tmit.bme.hu/speech/hdbMRBA.php
Young, S.J.: The HTK Hidden Markov Model Toolkit: Design and Philosophy. Technical Report TR.153, Department of Engineering. Cambridge University, UK (1993)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Szaszák, G., Vicsi, K. (2007). Speech Recognition Supported by Prosodic Information for Fixed Stress Languages. In: Matoušek, V., Mautner, P. (eds) Text, Speech and Dialogue. TSD 2007. Lecture Notes in Computer Science(), vol 4629. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74628-7_35
Download citation
DOI: https://doi.org/10.1007/978-3-540-74628-7_35
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-74627-0
Online ISBN: 978-3-540-74628-7
eBook Packages: Computer ScienceComputer Science (R0)