Abstract
We address the problem of pixel classification in fluorescence microscopy images by only using wavelength information. To achieve this, we use Support Vector Machines as supervised classifiers and pixels components as feature vectors. We propose a representation derived from the HSV color space that allows separation between color and intensity information. An extension of this transformation is also presented that allows to performs an a priori object/background segmentation. We show that these transformations not only allows intensity independent classification but also makes the classification problem more simple. As an illustration, we perform intensity independent pixel classification first on a synthetic then on real biological images.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Dorval, T., Genovesio, A.: Automated confocal microscope bias correction. In: American Institute of Physics (ed.) WIO 2006. 5th International Workshop on Information Optics, pp. 463–470 (2006)
Lenseigne, B., Brodin, P., Jeon, H., Christophe, T., Genovesio, A.: Support vector machines for automatic detection of tuberculosis bacteria in confocal microscopy images. In: IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Washington DC, USA, Springer, Heidelberg (to be published, 2007)
Scholkopf, B., Smola, A.: Learning with Kernels. MIT Press, Cambridge (2002)
Burges, C.J.C.: A tutorial on Support Vector Machine for pattern recognition. Usama fayyad edn. (1998)
Boughorbel, S., Tarel, J.P., Fleuret, F., Boujemaa, N.: Gcs kernel for svm-based image recognition. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds.) ICANN 2005. LNCS, vol. 3697, pp. 595–600. Springer, Heidelberg (2005), http://www-rocq.inria.fr/tarel/icann05b.html
Ayat, N., Cheriet, M., Suen, C.: Optimization of the svm kernels using an empirical error minimization scheme. In: Lee, S.-W., Verri, A. (eds.) SVM 2002. LNCS, vol. 2388, pp. 354–369. Springer, Heidelberg (2002)
Hsu, C.W., Chang C.C., Lin C.J.: A practical guide to support vector classification. National Taiwan University, Taipwi Taiwan (2003)
Munsell, A.: A Grammar of Color. Van-Nostrand-Reinhold, New York (1969)
Hung, S., Bouzerdoum, A.S., Chai, D.S.: Skin segmentation using color pixel classification: analysis and comparison. IEEE Transactions on Pattern Analysis and Machine Intelligence 27, 148–154 (2005)
Ihlow, A., Seiffert, U.: Microscope color image segmentation for resistance analysis of barley cells against powdery mildew. In: 9. Workshop ”Farbbildverarbeitung”. Number Report Nr. 3/, Ostfildern-Nellingen, Germany, ZBS Zentrum für Bild- und Signalverarbeitung e.V. Ilmenau, pp. 59–66 (2003)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lenseigne, B., Dorval, T., Ogier, A., Genovesio, A. (2007). A New Color Representation for Intensity Independent Pixel Classification in Confocal Microscopy Images. In: Blanc-Talon, J., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2007. Lecture Notes in Computer Science, vol 4678. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74607-2_54
Download citation
DOI: https://doi.org/10.1007/978-3-540-74607-2_54
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-74606-5
Online ISBN: 978-3-540-74607-2
eBook Packages: Computer ScienceComputer Science (R0)