[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A New Color Representation for Intensity Independent Pixel Classification in Confocal Microscopy Images

  • Conference paper
Advanced Concepts for Intelligent Vision Systems (ACIVS 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4678))

  • 1444 Accesses

Abstract

We address the problem of pixel classification in fluorescence microscopy images by only using wavelength information. To achieve this, we use Support Vector Machines as supervised classifiers and pixels components as feature vectors. We propose a representation derived from the HSV color space that allows separation between color and intensity information. An extension of this transformation is also presented that allows to performs an a priori object/background segmentation. We show that these transformations not only allows intensity independent classification but also makes the classification problem more simple. As an illustration, we perform intensity independent pixel classification first on a synthetic then on real biological images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Dorval, T., Genovesio, A.: Automated confocal microscope bias correction. In: American Institute of Physics (ed.) WIO 2006. 5th International Workshop on Information Optics, pp. 463–470 (2006)

    Google Scholar 

  2. Lenseigne, B., Brodin, P., Jeon, H., Christophe, T., Genovesio, A.: Support vector machines for automatic detection of tuberculosis bacteria in confocal microscopy images. In: IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Washington DC, USA, Springer, Heidelberg (to be published, 2007)

    Google Scholar 

  3. Scholkopf, B., Smola, A.: Learning with Kernels. MIT Press, Cambridge (2002)

    Google Scholar 

  4. Burges, C.J.C.: A tutorial on Support Vector Machine for pattern recognition. Usama fayyad edn. (1998)

    Google Scholar 

  5. Boughorbel, S., Tarel, J.P., Fleuret, F., Boujemaa, N.: Gcs kernel for svm-based image recognition. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds.) ICANN 2005. LNCS, vol. 3697, pp. 595–600. Springer, Heidelberg (2005), http://www-rocq.inria.fr/tarel/icann05b.html

    Google Scholar 

  6. Ayat, N., Cheriet, M., Suen, C.: Optimization of the svm kernels using an empirical error minimization scheme. In: Lee, S.-W., Verri, A. (eds.) SVM 2002. LNCS, vol. 2388, pp. 354–369. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  7. Hsu, C.W., Chang C.C., Lin C.J.: A practical guide to support vector classification. National Taiwan University, Taipwi Taiwan (2003)

    Google Scholar 

  8. Munsell, A.: A Grammar of Color. Van-Nostrand-Reinhold, New York (1969)

    Google Scholar 

  9. Hung, S., Bouzerdoum, A.S., Chai, D.S.: Skin segmentation using color pixel classification: analysis and comparison. IEEE Transactions on Pattern Analysis and Machine Intelligence 27, 148–154 (2005)

    Article  Google Scholar 

  10. Ihlow, A., Seiffert, U.: Microscope color image segmentation for resistance analysis of barley cells against powdery mildew. In: 9. Workshop ”Farbbildverarbeitung”. Number Report Nr. 3/, Ostfildern-Nellingen, Germany, ZBS Zentrum für Bild- und Signalverarbeitung e.V. Ilmenau, pp. 59–66 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jacques Blanc-Talon Wilfried Philips Dan Popescu Paul Scheunders

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lenseigne, B., Dorval, T., Ogier, A., Genovesio, A. (2007). A New Color Representation for Intensity Independent Pixel Classification in Confocal Microscopy Images. In: Blanc-Talon, J., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2007. Lecture Notes in Computer Science, vol 4678. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74607-2_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74607-2_54

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74606-5

  • Online ISBN: 978-3-540-74607-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics