[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

(t, m, s)-Nets and Maximized Minimum Distance

  • Conference paper
Monte Carlo and Quasi-Monte Carlo Methods 2006

Summary

Many experiments in computer graphics imply that the average quality of quasi-Monte Carlo integro-approximation is improved as the minimal distance of the point set grows. While the definition of (t, m, s)-nets in base b guarantees extensive stratification properties, which are best for t = 0, sampling points can still lie arbitrarily close together. We remove this degree of freedom, report results of two computer searches for (0, m, 2)-nets in base 2 with maximized minimum distance, and present an inferred construction for general m. The findings are especially useful in computer graphics and, unexpectedly, some (0, m, 2)-nets with the best minimum distance properties cannot be generated in the classical way using generator matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 143.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. R. Cook, L. Carpenter, and E. Catmull. The REYES Image Rendering Architecture. In Computer Graphics (SIGGRAPH ’87 Conference Proceedings), pages 95–102, July 1987.

    Google Scholar 

  2. R. Cranley and T. Patterson. Randomization of number theoretic methods for multiple integration. SIAM Journal on Numerical Analysis, 13:904–914, 1976.

    Article  MATH  MathSciNet  Google Scholar 

  3. R. Cook, T. Porter, and L. Carpenter. Distributed Ray Tracing. In Computer Graphics (SIGGRAPH ’84 Conference Proceedings), pages 137–145, 1984.

    Google Scholar 

  4. I. Friedel and A. Keller. Fast Generation of Randomized Low-Discrepancy Point Sets. In H. Niederreiter, K. Fang, and F. Hickernell, editors, Monte Carlo and Quasi-Monte Carlo Methods 2000, pages 257–273. Springer, 2002.

    Google Scholar 

  5. A. Glassner. Principles of Digital Image Synthesis. Morgan Kaufmann, 1995.

    Google Scholar 

  6. P. Haeberli and K. Akeley. The Accumulation Buffer: Hardware Support for High-Quality Rendering. In Computer Graphics (SIGGRAPH ’90 Conference Proceedings), pages 309–318, 1990.

    Google Scholar 

  7. A. Keller. Strictly Deterministic Sampling Methods in Computer Graphics. SIGGRAPH 2003 Course Notes, Course #44: Monte Carlo Ray Tracing, 2003.

    Google Scholar 

  8. A. Keller. Trajectory Splitting by Restricted Replication. Monte Carlo Methods and Applications, 10(3–4):321–329, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  9. A. Keller. Myths of Computer Graphics. In H. Niederreiter, editor, Monte Carlo and Quasi-Monte Carlo Methods 2004, pages 217–243. Springer, 2006.

    Google Scholar 

  10. A. Keller and W. Heidrich. Interleaved Sampling. In K. Myszkowski and S. Gortler, editors, Rendering Techniques 2001 (Proc. 12th Eurographics Workshop on Rendering), pages 269–276. Springer, 2001.

    Google Scholar 

  11. T. Kollig and A. Keller. Efficient Multidimensional Sampling. Computer Graphics Forum, 21(3):557–563, September 2002.

    Article  Google Scholar 

  12. G. Larcher and F. Pillichshammer. Walsh Series Analysis of the L2-Discrepancy of Symmetrisized Point Sets. Monatsh. Math., 132:1–18, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  13. H. Niederreiter. Random Number Generation and Quasi-Monte Carlo Methods. SIAM, Philadelphia, 1992.

    MATH  Google Scholar 

  14. A. Owen. Randomly Permuted (t, m, s)-Nets and (t, s)-Sequences. In H. Niederreiter and P. Shiue, editors, Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing, volume 106 of Lecture Notes in Statistics, pages 299–315. Springer, 1995.

    Google Scholar 

  15. A. Owen. Monte Carlo Extension of Quasi-Monte Carlo. In Winter Simulation Conference, pages 571–577. IEEE Press, 1998.

    Google Scholar 

  16. F. Panneton. Construction d’ensembles de points basé sur une récurrence linéaire dans un corps fini de caractéristique 2 pour la simulation Monte Carlo et l’intégration quasi-Monte Carlo. PhD thesis, Université de Montréal, 2004.

    Google Scholar 

  17. G. Pirsic and W. Ch. Schmid. Calculation of the quality parameter of digital nets and application to their construction. J. Complexity, 17(4):827–839, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  18. H. Press, S. Teukolsky, T. Vetterling, and B. Flannery. Numerical Recipes in C. Cambridge University Press, 1992.

    Google Scholar 

  19. T. Rolfe. Optimal Queens - A classical problem solved by backtracking. Dr. Dobb’s Journal, 30(372), May 2005.

    Google Scholar 

  20. I. Sobol’. On the Distribution of Points in a Cube and the approximate Evaluation of Integrals. Zh. vychisl. Mat. mat. Fiz., 7(4):784–802, 1967.

    MathSciNet  Google Scholar 

  21. C. Wächter and A. Keller. Efficient Simultaneous Simulation of Markov Chains. In A. Keller, S. Heinrich, and H. Niederreiter, editors, Monte Carlo and Quasi-Monte Carlo Methods 2006, in this volume. Springer, 2007.

    Google Scholar 

  22. J. Yellot. Spectral Consequences of Photoreceptor Sampling in the Rhesus Retina. Science, 221:382–385, 1983.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Grünschloß, L., Hanika, J., Schwede, R., Keller, A. (2008). (t, m, s)-Nets and Maximized Minimum Distance. In: Keller, A., Heinrich, S., Niederreiter, H. (eds) Monte Carlo and Quasi-Monte Carlo Methods 2006. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74496-2_23

Download citation

Publish with us

Policies and ethics