[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Image Similarity Based on Hierarchies of ICA Mixtures

  • Conference paper
Independent Component Analysis and Signal Separation (ICA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4666))

  • 2496 Accesses

Abstract

This paper presents a novel algorithm to build hierarchies from independent component analyzer mixtures and its application to image similarity measure. The hierarchy algorithm composes an agglomerative (bottom-up) clustering from the estimated parameters (basis vectors and bias terms) of the ICA mixture. Merging at different levels of the hierarchy is made using the Kullback-Leibler distance between clusters. The procedure is applied to merge similar patches on a natural image, to group different images of an object, and to create hierarchical levels of clustering from images of different objects. Results show suitable image hierarchies obtained by clustering from basis functions to higher-level structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Lee, T.W., Lewicki, M.S., Sejnowski, T.J.: ICA mixture models for unsupervised classification of non-gaussian classes and automatic context switching in blind signal separation. IEEE Trans. on Patt. Analysis and Machine Intelligence 22(10), 1078–1089 (2000)

    Article  Google Scholar 

  2. Penny, W.D., Roberts, S.: Mixtures of independent component analyzers. In: Dorffner, G., Bischof, H., Hornik, K. (eds.) ICANN 2001. LNCS, vol. 2130, pp. 527–534. Springer, Heidelberg (2001)

    Google Scholar 

  3. Choudrey, R., Roberts, S.: Variational Mixture of Bayesian Independent Component Analysers. Neural Computation 15(1), 213–252 (2003)

    Article  MATH  Google Scholar 

  4. Mollah, N.H., Minami, M., Eguchi, S.: Exploring Latent Structure of Mixture ICA Models by the Minimum ß-Divergence Method. Neural Computation 18(1), 166–190 (2006)

    Article  MATH  Google Scholar 

  5. Bell, A.J., Sejnowski, T.J.: The Independent Components of natural scenes are edge filters. Vision Research 37(23), 3327–3338 (1997)

    Article  Google Scholar 

  6. Van Hateren, J.H., van der Shaaf, A.: Independent component filters of natural images compared with simple cells in primary visual cortex. Proceedings of Royal Society of London: B 265, 359–366 (1998)

    Article  Google Scholar 

  7. Matsuda, Y., Yamaguchi, K.: Linear multilayer ICA generating hierarchical edge detectors. Neural Computation 19(1), 218–230 (2007)

    Article  MATH  Google Scholar 

  8. Lee, T.S., Mumford, D.: Hierarchical Bayesian inference in the visual cortex. Journal of the Optical Society of America A 20(7), 1434–1448 (2003)

    Article  Google Scholar 

  9. Mackay, D.J.: Information theory, inference, and learning algorithms. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  10. Vergara, L., Salazar, A., Igual, J., Serrano, A.: Data Clustering Methods Based on Mixture of Independent Component Analyzers. In: Proc. of ICA Research Network International Workshop, ICArn, Liverpool, pp. 127–130 (2006)

    Google Scholar 

  11. Hyvarinen, A., Hoyer, P.O., Inki, M.: Topographic independent component analysis. Neural Computation 13(7), 1527–1558 (2001)

    Article  Google Scholar 

  12. Nene, S.A., Nayar, S.K., Murase, H.: Columbia Object Image Library (COIL-100), Technical Report CUCS-006-96 (February 1996)

    Google Scholar 

  13. Salazar, A., Unió, J.M., Serrano, A., Gosalbez, J.: Neural networks for defect detection in non-destructive evaluation by sonic signals. LNCS, vol. 4507, pp. 631–638. Springer, Heidelberg (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Mike E. Davies Christopher J. James Samer A. Abdallah Mark D Plumbley

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Serrano, A., Salazar, A., Igual, J., Vergara, L. (2007). Image Similarity Based on Hierarchies of ICA Mixtures. In: Davies, M.E., James, C.J., Abdallah, S.A., Plumbley, M.D. (eds) Independent Component Analysis and Signal Separation. ICA 2007. Lecture Notes in Computer Science, vol 4666. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74494-8_98

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74494-8_98

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74493-1

  • Online ISBN: 978-3-540-74494-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics