[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Blind Matrix Decomposition Techniques to Identify Marker Genes from Microarrays

  • Conference paper
Independent Component Analysis and Signal Separation (ICA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4666))

  • 3055 Accesses

Abstract

Exploratory matrix factorization methods like PCA, ICA and sparseNMF are applied to identify marker genes and classify gene expression data sets into different categories for diagnostic purposes or group genes into functional categories for further investigation of related regulatory pathways. Gene expression levels of either human breast cancer (HBC) cell lines [6] or the famous leucemia data set [10] are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baldi, P., Hatfield, W.: DNA Microarrays and Gene Epression. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  2. Cichocki, A., Amari, S.-I.: Adaptive Blind Signal and Image Processing. Wiley, Chichester (2002)

    Google Scholar 

  3. Diamantaras, K.I., Kung, S.Y.: Principal Component Neural Networks, Theory and Applications. Wiley, Chichester (1996)

    MATH  Google Scholar 

  4. Souloumiac, A., Cardoso, J.-F.: Blind beamforming for non-gaussian signals. IEEE Proc. 140, 362–370 (1993)

    Google Scholar 

  5. Golub, T., Mesirov, J.P., Brunet, J.-P., Tamayo, P.: Metagenes and molecular pattern discovery using matrix factorization. PNAS 101, 4164–4169 (2004)

    Article  Google Scholar 

  6. Kang, Y., Siegel, P.M., Shu, A., Drobnjak, M., Kakonen, S.M., Cordón, C., Guise, Th.A., Massagué, J.: A multigenic program mdeiating breast cancer metastasis to bone. Cancer Cell 3, 537–549 (2003)

    Article  Google Scholar 

  7. Lee, S.-I., Batzoglou, S.: Application of independent component analysis to microarrays. Genome Biology, 4, R76.1–R76.21 (2003)

    Google Scholar 

  8. Zhang, H.J., Cheng, Q., Li, S.Z., Hou, X.W.: Learning spatially localized, parts-based representation. IEEE (2001)

    Google Scholar 

  9. Schachtner, R.: Machine Learning Approaches to the Analysis of Microarray Data. Diploma Thesis, University of Regensburg (2006)

    Google Scholar 

  10. Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J.P., Coller, H., Loh, M.L., Downing, J.R., Caligiuri, M.A., Bloomeld, C.D., Lander, E.S., Golub, T.R., Slonim, D.K.: Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Science, 286 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Mike E. Davies Christopher J. James Samer A. Abdallah Mark D Plumbley

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schachtner, R. et al. (2007). Blind Matrix Decomposition Techniques to Identify Marker Genes from Microarrays. In: Davies, M.E., James, C.J., Abdallah, S.A., Plumbley, M.D. (eds) Independent Component Analysis and Signal Separation. ICA 2007. Lecture Notes in Computer Science, vol 4666. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74494-8_81

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74494-8_81

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74493-1

  • Online ISBN: 978-3-540-74494-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics