Abstract
Exploratory matrix factorization methods like PCA, ICA and sparseNMF are applied to identify marker genes and classify gene expression data sets into different categories for diagnostic purposes or group genes into functional categories for further investigation of related regulatory pathways. Gene expression levels of either human breast cancer (HBC) cell lines [6] or the famous leucemia data set [10] are considered.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Baldi, P., Hatfield, W.: DNA Microarrays and Gene Epression. Cambridge University Press, Cambridge (2002)
Cichocki, A., Amari, S.-I.: Adaptive Blind Signal and Image Processing. Wiley, Chichester (2002)
Diamantaras, K.I., Kung, S.Y.: Principal Component Neural Networks, Theory and Applications. Wiley, Chichester (1996)
Souloumiac, A., Cardoso, J.-F.: Blind beamforming for non-gaussian signals. IEEE Proc. 140, 362–370 (1993)
Golub, T., Mesirov, J.P., Brunet, J.-P., Tamayo, P.: Metagenes and molecular pattern discovery using matrix factorization. PNAS 101, 4164–4169 (2004)
Kang, Y., Siegel, P.M., Shu, A., Drobnjak, M., Kakonen, S.M., Cordón, C., Guise, Th.A., Massagué, J.: A multigenic program mdeiating breast cancer metastasis to bone. Cancer Cell 3, 537–549 (2003)
Lee, S.-I., Batzoglou, S.: Application of independent component analysis to microarrays. Genome Biology, 4, R76.1–R76.21 (2003)
Zhang, H.J., Cheng, Q., Li, S.Z., Hou, X.W.: Learning spatially localized, parts-based representation. IEEE (2001)
Schachtner, R.: Machine Learning Approaches to the Analysis of Microarray Data. Diploma Thesis, University of Regensburg (2006)
Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J.P., Coller, H., Loh, M.L., Downing, J.R., Caligiuri, M.A., Bloomeld, C.D., Lander, E.S., Golub, T.R., Slonim, D.K.: Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Science, 286 (1999)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Schachtner, R. et al. (2007). Blind Matrix Decomposition Techniques to Identify Marker Genes from Microarrays. In: Davies, M.E., James, C.J., Abdallah, S.A., Plumbley, M.D. (eds) Independent Component Analysis and Signal Separation. ICA 2007. Lecture Notes in Computer Science, vol 4666. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74494-8_81
Download citation
DOI: https://doi.org/10.1007/978-3-540-74494-8_81
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-74493-1
Online ISBN: 978-3-540-74494-8
eBook Packages: Computer ScienceComputer Science (R0)