[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Discovering Convolutive Speech Phones Using Sparseness and Non-negativity

  • Conference paper
Independent Component Analysis and Signal Separation (ICA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4666))

Abstract

Discovering a representation that allows auditory data to be parsimoniously represented is useful for many machine learning and signal processing tasks. Such a representation can be constructed by Non-negative Matrix Factorisation (NMF), which is a method for finding parts-based representations of non-negative data. Here, we present a convolutive NMF algorithm that includes a sparseness constraint on the activations and has multiplicative updates. In combination with a spectral magnitude transform of speech, this method extracts speech phones that exhibit sparse activation patterns, which we use in a supervised separation scheme for monophonic mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Comon, P.: Independent component analysis: A new concept. Signal Processing 36, 287–314 (1994)

    Article  MATH  Google Scholar 

  2. Paatero, P., Tapper, U.: Positive matrix factorization: A nonnegative factor model with optimal utilization of error estimates of data values. Environmetrics 5, 111–126 (1994)

    Article  Google Scholar 

  3. Lee, D.D., Seung, H.S.: Algorithms for non-negative matrix factorization. In: Adv. in Neu. Info. Proc. Sys. 13, pp. 556–562. MIT Press, Cambridge (2001), URL: citeseer.ist.psu.edu/lee00algorithms.html

    Google Scholar 

  4. Smaragdis, P.: Non-negative matrix factor deconvolution; extraction of multiple sound sources from monophonic inputs. In: Puntonet, C.G., Prieto, A.G. (eds.) ICA 2004. LNCS, vol. 3195, pp. 494–499. Springer, Heidelberg (2004)

    Google Scholar 

  5. Abdallah, S.A., Plumbley, M.D.: Polyphonic transcription by non-negative sparse coding of power spectra. In: Proceedings of the 5th International Conference on Music Information Retrieval (ISMIR 2004), pp. 318–325 (2004)

    Google Scholar 

  6. O’Grady, P.D.: Sparse Separation of Under-Determined Speech Mixtures. PhD thesis, National University of Ireland Maynooth (2007), URL http://ee.ucd.ie/~pogrady/ogrady2007_phd.pdf

  7. Eggert, J., Körner, E.: Sparse coding and NMF. In: IEEE International Joint Conference on Neural Networks, Proceedings, July 2004, vol. 4, pp. 2529–2533. IEEE, Los Alamitos (2004)

    Google Scholar 

  8. Smaragdis, P.: Convolutive speech bases and their application to supervised speech separation. IEEE Transaction on Audio, Speech and Language Processing (2007)

    Google Scholar 

  9. Févotte, C., Gribonval, R., Vincent, E.: BSS_EVAL toolbox user guide. Technical Report 1706, IRISA (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Mike E. Davies Christopher J. James Samer A. Abdallah Mark D Plumbley

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

O’Grady, P.D., Pearlmutter, B.A. (2007). Discovering Convolutive Speech Phones Using Sparseness and Non-negativity. In: Davies, M.E., James, C.J., Abdallah, S.A., Plumbley, M.D. (eds) Independent Component Analysis and Signal Separation. ICA 2007. Lecture Notes in Computer Science, vol 4666. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74494-8_65

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74494-8_65

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74493-1

  • Online ISBN: 978-3-540-74494-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics