Abstract
We have derived a new algorithm for dictionary learning for sparse coding in the ℓ1 exact sparse framework. The algorithm does not rely on an approximation residual to operate, but rather uses the special geometry of the ℓ1 exact sparse solution to give a computationally simple yet conceptually interesting algorithm. A self-normalizing version of the algorithm is also derived, which uses negative feedback to ensure that basis vectors converge to unit norm. The operation of the algorithm is illustrated on a simple numerical example.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Kreutz-Delgado, K., Murray, J.F., Rao, B.D., Engan, K., Lee, T.W., Sejnowski, T.J.: Dictionary learning algorithms for sparse representation. Neural Computation 15, 349–396 (2003)
Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit. SIAM Journal on Scientific Computing 20, 33–61 (1998)
Bofill, P., Zibulevsky, M.: Underdetermined blind source separation using sparse representations. Signal Processing 81, 2353–2362 (2001)
Olshausen, B.A., Field, D.J.: Emergence of simple-cell receptive-field properties by learning a sparse code for natural images. Nature 381, 607–609 (1996)
Lewicki, M.S., Sejnowski, T.J.: Learning overcomplete representations. Neural Computation 12, 337–365 (2000)
Aharon, M., Elad, M., Bruckstein, A.: K-SVD: Design of dictionaries for sparse representation. In: Proceedings of SPARS 2005, Rennes, France, pp. 9–12 (2005)
Georgiev, P., Theis, F., Cichocki, A.: Sparse component analysis and blind source separation of underdetermined mixtures. IEEE Transactions on Neural Networks 16, 992–996 (2005)
Plumbley, M.D.: Recovery of sparse representations by polytope faces pursuit. In: Rosca, J., Erdogmus, D., Príncipe, J.C., Haykin, S. (eds.) ICA 2006. LNCS, vol. 3889, pp. 206–213. Springer, Heidelberg (2006)
Rosen, J.B.: The gradient projection method for nonlinear programming. Part I. Linear constraints. J. Soc. Indust. Appl. Math. 8, 181–217 (1960)
Oja, E.: A simplified neuron model as a principal component analyzer. Journal of Mathematical Biology 15, 267–273 (1982)
Cook, P.A.: Nonlinear Dynamical Systems. Prentice Hall, Englewood Cliffs, NJ (1986)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Plumbley, M.D. (2007). Dictionary Learning for L1-Exact Sparse Coding. In: Davies, M.E., James, C.J., Abdallah, S.A., Plumbley, M.D. (eds) Independent Component Analysis and Signal Separation. ICA 2007. Lecture Notes in Computer Science, vol 4666. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74494-8_51
Download citation
DOI: https://doi.org/10.1007/978-3-540-74494-8_51
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-74493-1
Online ISBN: 978-3-540-74494-8
eBook Packages: Computer ScienceComputer Science (R0)