[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Dictionary Learning for L1-Exact Sparse Coding

  • Conference paper
Independent Component Analysis and Signal Separation (ICA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4666))

Abstract

We have derived a new algorithm for dictionary learning for sparse coding in the ℓ1 exact sparse framework. The algorithm does not rely on an approximation residual to operate, but rather uses the special geometry of the ℓ1 exact sparse solution to give a computationally simple yet conceptually interesting algorithm. A self-normalizing version of the algorithm is also derived, which uses negative feedback to ensure that basis vectors converge to unit norm. The operation of the algorithm is illustrated on a simple numerical example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kreutz-Delgado, K., Murray, J.F., Rao, B.D., Engan, K., Lee, T.W., Sejnowski, T.J.: Dictionary learning algorithms for sparse representation. Neural Computation 15, 349–396 (2003)

    Article  MATH  Google Scholar 

  2. Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit. SIAM Journal on Scientific Computing 20, 33–61 (1998)

    Article  MathSciNet  Google Scholar 

  3. Bofill, P., Zibulevsky, M.: Underdetermined blind source separation using sparse representations. Signal Processing 81, 2353–2362 (2001)

    Article  MATH  Google Scholar 

  4. Olshausen, B.A., Field, D.J.: Emergence of simple-cell receptive-field properties by learning a sparse code for natural images. Nature 381, 607–609 (1996)

    Article  Google Scholar 

  5. Lewicki, M.S., Sejnowski, T.J.: Learning overcomplete representations. Neural Computation 12, 337–365 (2000)

    Article  Google Scholar 

  6. Aharon, M., Elad, M., Bruckstein, A.: K-SVD: Design of dictionaries for sparse representation. In: Proceedings of SPARS 2005, Rennes, France, pp. 9–12 (2005)

    Google Scholar 

  7. Georgiev, P., Theis, F., Cichocki, A.: Sparse component analysis and blind source separation of underdetermined mixtures. IEEE Transactions on Neural Networks 16, 992–996 (2005)

    Article  Google Scholar 

  8. Plumbley, M.D.: Recovery of sparse representations by polytope faces pursuit. In: Rosca, J., Erdogmus, D., Príncipe, J.C., Haykin, S. (eds.) ICA 2006. LNCS, vol. 3889, pp. 206–213. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Rosen, J.B.: The gradient projection method for nonlinear programming. Part I. Linear constraints. J. Soc. Indust. Appl. Math. 8, 181–217 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  10. Oja, E.: A simplified neuron model as a principal component analyzer. Journal of Mathematical Biology 15, 267–273 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  11. Cook, P.A.: Nonlinear Dynamical Systems. Prentice Hall, Englewood Cliffs, NJ (1986)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Mike E. Davies Christopher J. James Samer A. Abdallah Mark D Plumbley

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Plumbley, M.D. (2007). Dictionary Learning for L1-Exact Sparse Coding. In: Davies, M.E., James, C.J., Abdallah, S.A., Plumbley, M.D. (eds) Independent Component Analysis and Signal Separation. ICA 2007. Lecture Notes in Computer Science, vol 4666. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74494-8_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74494-8_51

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74493-1

  • Online ISBN: 978-3-540-74494-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics