Abstract
We consider the problem of blindly separating time-varying instantaneous mixtures. It is assumed that the arbitrary time dependency of the mixing coefficient, is known up to a finite number of parameters. Using sparse (or sparsified) sources, we geometrically identify samples of the curves representing the parametric model. The parameters are found using a probabilistic approach of estimating the maximum likelihood of a curve, given the data. After identifying the model parameters, the mixing system is inverted to estimate the sources. The new approach to blind separation of time-varying mixtures is demonstrated using both synthetic and real data.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ballard, D.H.: Generalizing the Hough Transform to Detect Arbitrary Shapes. Pattern Recognition 13(2), 111–122 (1981)
Everson, R.M., Roberts, S.J.: Particle Filters for Non-stationary ICA. In: Advances in Independent Component Analysis, pp. 23–41. Springer, Heidelberg (2000)
Kaftory, R., Zeevi, Y.Y.: Blind Separation of Time-Varying Signal Mixtures Using Zadeh’s Transform. In: Proceedings of EUSIPCO (2006)
Kenneth, H., Deniz, E., Jose, P.: Blind Source Separation of Time-Varying Instantaneous Mixtures Using an On-line Algorithm. In: Proc. ICASSP 2002, pp. 993–996 (2001)
Kisilev, P., Zibulevsky, M., Zeevi, Y.Y.: Blind Source Separation Using Multinode Sparse Representation. In: Proc. ICIP 2001, pp. 202–205 (2001)
Kuivunen, V., Enescu, M., Oja, E.: Adaptive Algorithm for Blind Separation from Noisy Time-Varying Mixtures. Neural Computation. 13, 2339–2358 (2001)
Mukai, R., Sawada, H., Araki, S., Makino, S.: Robust Real-Time Blind Source Separation for Moving Speakers in a Room. In: Proc. ICASSP 2003, pp. 469–472 (2003)
Scott, D.W.: Multivariate Density Estimation, p. 139. Wiley, Chichester (1992)
Weisman, T., Yeredor, A.: Separation of Periodically Time-Varying Mixtures Using Second-Order Statistics. In: Rosca, J., Erdogmus, D., Príncipe, J.C., Haykin, S. (eds.) ICA 2006. LNCS, vol. 3889, Springer, Heidelberg (2006)
Yeredor, A.: TV-SOBI: An Expansion of SOBI for Linearly Time-Varying Mixtures. In: Proceedings of the ICA 2003 (2003)
Zibulevsky, M., Pearlmutter, B.A., Bofill, P., Kisilev, P.: Blind Source Separation by Sparse Decomposition, Independent Component Analysis: Principles and Practice, Cambridge (2001)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kaftory, R., Zeevi, Y.Y. (2007). Probabilistic Geometric Approach to Blind Separation of Time-Varying Mixtures. In: Davies, M.E., James, C.J., Abdallah, S.A., Plumbley, M.D. (eds) Independent Component Analysis and Signal Separation. ICA 2007. Lecture Notes in Computer Science, vol 4666. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74494-8_47
Download citation
DOI: https://doi.org/10.1007/978-3-540-74494-8_47
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-74493-1
Online ISBN: 978-3-540-74494-8
eBook Packages: Computer ScienceComputer Science (R0)