[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Wavelet Synopsis: Setting Unselected Coefficients to Zero Is Not Optimal

  • Conference paper
Database and Expert Systems Applications (DEXA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4653))

Included in the following conference series:

  • 1233 Accesses

Abstract

Histogram and Wavelet synopses provide useful tools in query optimization and approximate query answering. Traditional wavelet synopsis construction algorithms treat the construction algorithms as the wavelet coefficients selection problem which is called Coefficient Thresholding. However, all these algorithms just focus on the selection of best wavelet coefficients but deal with the unselected ones naively (just setting them to zero). A key problem is whether it can achieve the optimum of error when the unselected ones are set to one single value: zero. In this paper, we consider a novel Wavelet-based Synopsis construction for the known L2 error measure which can handle the unselected wavelet coefficients effectively. We provide a comprehensive theoretical analysis and demonstrate the effectiveness of these algorithms in providing more optimal error significantly through synthetic data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Garofalakis, M.N., Kumar, A.: Wavelet synopses for general error metrics. ACM Trans. Database Syst. 30(4), 888–928 (2005)

    Article  Google Scholar 

  2. Garofalakis, M.N., Gibbons, P.B.: Probabilistic wavelet synopses. ACM Trans. Database Syst. 29, 43–90 (2004)

    Article  Google Scholar 

  3. Garofalakis, M.N., Gibbons, P.B.: Wavelet synopses with error guarantees. In: SIGMOD Conference, pp. 476–487 (2002)

    Google Scholar 

  4. Karras, P., Mamoulis, N.: One-Pass Wavelet Synopses for Maximum-Error Metrics. In: VLDB 2005, pp. 421–432 (2005)

    Google Scholar 

  5. Muthukrishnan, S.: Subquadratic Algorithms for Workload-Aware Haar Wavelet Synopses. In: Ramanujam, R., Sen, S. (eds.) FSTTCS 2005. LNCS, vol. 3821, pp. 285–296. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  6. Blatter, C.: Wavelets: A Primer. A K Peters (1998)

    Google Scholar 

  7. Li, T., Li, Q., Zhu, S., Ogihara, M.: A survey on wavelet applications in data mining. SIGKDD Explorations Newsletter 4(2), 49–68 (2002)

    Article  Google Scholar 

  8. Matias, Y., Vitter, J.S., Wang, M.: Wavelet-based histograms for selectivity estimation. In: Proc. of SIGMOD Conf., pp. 448–459 (1998)

    Google Scholar 

  9. Chakrabarti, K., Garofalakis, M., Rastogi, R., Shim, K.: Approximate query processing using wavelets. VLDB Journal 10(2-3), 199–223 (2001)

    MATH  Google Scholar 

  10. http://www.cs.unc.edu/~vivek/home/stenopedia/zipf/genzipf.c

Download references

Author information

Authors and Affiliations

Authors

Editor information

Roland Wagner Norman Revell Günther Pernul

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sun, C., Lu, Y.S., Zhou, C., Liu, J. (2007). Wavelet Synopsis: Setting Unselected Coefficients to Zero Is Not Optimal. In: Wagner, R., Revell, N., Pernul, G. (eds) Database and Expert Systems Applications. DEXA 2007. Lecture Notes in Computer Science, vol 4653. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74469-6_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74469-6_49

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74467-2

  • Online ISBN: 978-3-540-74469-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics