[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Decomposing DAGs into Disjoint Chains

  • Conference paper
Database and Expert Systems Applications (DEXA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4653))

Included in the following conference series:

Abstract

In this paper, we propose an efficient algorithm to decompose a directed acyclic graph (DAG) into chains, which has a lot of applications in computer science and engineering. Especially, it can be used to store transitive closures of directed graphs in an economical way. For a DAG G with n nodes, our algorithm needs O\((n^{2} + bn \sqrt{b} )\) time to find a minimized set of disjoint chains, where b is G′s width, defined to be the largest node subset U of G such that for every pair of nodes u, v ∈̣U, there does not exist a path from u to v or from v to u. Accordingly, the transitive closure of G can be stored in O(bn) space, and the reachability can be checked in O(logb) time. The method can also be extended to handle cyclic directed graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alt, H., Blum, N., Mehlhorn, K., Paul, M.: Computing a maximum cardinality matching in a bipartite graph in time O(n1.5 \(\sqrt{e/(logn)}\)). Information Processing Letters 37, 237–240 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  2. Asratian, A.S., Denley, T., Haggkvist, R.: Bipartite Graphs and their Applications, Cambridge University (1998)

    Google Scholar 

  3. Banerjee, J., Kim, W., Kim, S., Garza, J.F.: Clustering a DAG for CAD Databases. IEEE Trans. on Knowledge and Data Engineering 14(11), 1684–1699 (1988)

    MATH  MathSciNet  Google Scholar 

  4. Chen, Y., Cooke, D.: On the Transitive Closure Representation and Adjustable Compression. In: SAC 2006, April 23-27, Dijon, France, pp. 450–455 (2006)

    Google Scholar 

  5. Hopcroft, J.E., Karp, R.M.: An n2.5 algorithm for maximum matching in bipartite graphs. SIAM J. Comput. 2, 225–231 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  6. Jagadish, H.V.: A Compression Technique to Materialize Transitive Closure. ACM Trans. Database Systems 15(4), 558–598 (1990)

    Article  MathSciNet  Google Scholar 

  7. Keller, T., Graefe, G., Maier, D.: Efficient Assembly of Complex Objects. In: Proc. ACM SIGMOD conf. Denver, Colo., pp. 148–157 (1991)

    Google Scholar 

  8. Kuno, H.A., Rundensteiner, E.A.: Incremental Maintenance of Materialized Object-Oriented Views in MultiView: Strategies and Performance Evaluation. IEEE Transactions on Knowledge and Data Engineering 10(5), 768–792 (1998)

    Article  Google Scholar 

  9. Teuhola, J.: Path Signatures: A Way to Speed up Recursion in Relational Databases. IEEE Trans. on Knowledge and Data Engineering 8(3), 446–454 (1996)

    Article  Google Scholar 

  10. Wang, H., Meng, X.: On the Sequencing of Tree Structures for XML Indexing. In: Proc. Conf. Data Engineering, Tokyo, Japan, pp. 372–385 (April 2005)

    Google Scholar 

  11. Zhang, C., Naughton, J., DeWitt, D., Luo, Q., Lohman, G.: On Supporting Containment Queries in Relational Database Management Systems. In: Proc. of ACM SIGMOD Intl. Conf. on Management of Data, California (2001)

    Google Scholar 

  12. Zibin, Y., Gil, J.: Efficient Subtyping Tests with PQ-Encoding. In: Proc. of the 2001 ACM SIGPLAN conf. on Object-Oriented Programming Systems, Languages and Application, Florida, pp. 96–107 (October 14-18, 2001)

    Google Scholar 

  13. Dilworth, R.P.: A decomposition theorem for partially ordered sets. Ann. Math. 51, 161–166 (1950)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Roland Wagner Norman Revell Günther Pernul

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chen, Y. (2007). Decomposing DAGs into Disjoint Chains. In: Wagner, R., Revell, N., Pernul, G. (eds) Database and Expert Systems Applications. DEXA 2007. Lecture Notes in Computer Science, vol 4653. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74469-6_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74469-6_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74467-2

  • Online ISBN: 978-3-540-74469-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics