[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Adapting Parallel Algorithms to the W-Stream Model, with Applications to Graph Problems

  • Conference paper
Mathematical Foundations of Computer Science 2007 (MFCS 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4708))

Abstract

In this paper we show how parallel algorithms can be turned into efficient streaming algorithms for several classical combinatorial problems in the W − Stream . In this model, at each pass one input stream is read and one output stream is written; streams are pipelined in such a way that the output stream produced at pass i is given as input stream at pass i + 1. Our techniques give new insights on developing streaming algorithms and yield optimal algorithms (up to polylog factors) for several classical problems in this model including sorting, connectivity, minimum spanning tree, biconnected components, and maximal independent set.

Supported in part by the Sixth Framework Programme of the EU under contract number 001907 (“DELIS: Dynamically Evolving, Large Scale Information Systems”), and by the Italian MIUR Project “MAINSTREAM: Algorithms for massive information structures and data streams”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aggarwal, G., Datar, M., Rajagopalan, S., Ruhl, M.: On the streaming model augmented with a sorting primitive. In: Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2004), IEEE Computer Society Press, Los Alamitos (2004)

    Google Scholar 

  2. Alon, N., Matias, Y., Szegedy, M.: The space complexity of approximating the frequency moments. J. Computer and System Sciences 58(1), 137–147 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  3. Anderson, R., Miller, G.: A simple randomized parallel algorithm for list-ranking. Information Processing Letters 33(5), 269–273 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  4. Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.: Models and issues in data stream systems. In: Proceedings of the 21st ACM Symposium on Principles of Database Systems (PODS 2002), pp. 1–16. ACM Press, New York (2002)

    Google Scholar 

  5. Bar-Yossef, Z., Kumar, R., Sivakumar, D.: Reductions in streaming algorithms, with an application to counting triangles in graphs. In: Proc. 13th annual ACM-SIAM symposium on Discrete algorithms (SODA 2002), pp. 623–632. ACM Press, New York (2002)

    Google Scholar 

  6. Blelloch, G., Maggs, B.: Parallel algorithms. In: The Computer Science and Engineering Handbook, pp. 277–315 (1997)

    Google Scholar 

  7. Chiang, Y., Goodrich, M., Grove, E., Tamassia, R., Vemgroff, D., Vitter, J.: External-memory graph algorithms. In: Proc. 6th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 1995), pp. 139–149. ACM Press, New York (1995)

    Google Scholar 

  8. Demetrescu, C., Finocchi, I., Ribichini, A.: Trading off space for passes in graph streaming problems. In: Proc. 17th Annual ACM-SIAM Symposium of Discrete Algorithms (SODA 2006), pp. 714–723. ACM Press, New York (2006)

    Chapter  Google Scholar 

  9. Feigenbaum, J., Kannan, S., McGregor, A., Suri, S., Zhang, J.: On graph problems in a semi-streaming model. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 207–216. Springer, Heidelberg (2004)

    Google Scholar 

  10. Feigenbaum, J., Kannan, S., McGregor, A., Suri, S., Zhang, J.: Graph distances in the streaming model: the value of space. In: Proceedings of the 16th ACM/SIAM Symposium on Discrete Algorithms (SODA 2005), pp. 745–754 (2005)

    Google Scholar 

  11. Feigenbaum, J., Kannan, S., Strauss, M., Viswanathan, M.: An approximate L 1 difference algorithm for massive data streams. SIAM Journal on Computing 32(1), 131–151 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  12. Gilbert, A., Guha, S., Indyk, P., Kotidis, Y., Muthukrishnan, S., Strauss, M.: Fast, small-space algorithms for approximate histogram maintenance. In: Proc. 34th ACM Symposium on Theory of Computing (STOC 2002), pp. 389–398. ACM Press, New York (2002)

    Google Scholar 

  13. Golab, L., Ozsu, M.: Data stream management issues: a survey. Technical report, School of Computer Science, University of Waterloo, TR CS-2003-08 (2003)

    Google Scholar 

  14. Henzinger, M., Raghavan, P., Rajagopalan, S.: Computing on data streams. In: “External Memory algorithms”. DIMACS series in Discrete Mathematics and Theoretical Computer Science 50, 107–118 (1999)

    MathSciNet  Google Scholar 

  15. Jájá, J.: An introduction to parallel algorithms. Addison-Wesley, Reading (1992)

    MATH  Google Scholar 

  16. Kushilevitz, E., Nisan, N.: Communication Complexity. Cambr. U. Press (1997)

    Google Scholar 

  17. Luby, M.: A simple parallel algorithm for the maximal independent set problem. SIAM Journal of Computing 15(4), 1036–1053 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  18. Munro, I., Paterson, M.: Selection and sorting with limited storage. Theoretical Computer Science 12, 315–323 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  19. Muthukrishnan, S.: Data streams: algorithms and applications. Technical report (2003), Available at http://athos.rutgers.edu/~muthu/stream-1-1.ps

  20. Reif, J.: Optimal parallel algorithms for integer sorting and graph connectivity. Technical Report TR 08-85, Aiken Comp. Lab, Harvard U., Cambridge (1985)

    Google Scholar 

  21. Ruhl, M.: Efficient Algorithms for New Computational Models. PhD thesis, Massauchussets Institute of Technology (September 2003)

    Google Scholar 

  22. Shiloach, Y., Vishkin, U.: An o(logn) Parallel Connectivity Algorithm. J. Algorithms 3(1), 57–67 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  23. Sullivan, M., Heybey, A.: Tribeca: A system for managing large databases of network traffic. In: Proceedings USENIX Annual Technical Conference (1998)

    Google Scholar 

  24. Tarjan, R., Vishkin, U.: Finding biconnected components and computing tree functions in logarithmic parallel time. In: Proc. 25th Annual IEEE Symposium on Foundations of Computer Science (FOCS 1984), pp. 12–20. IEEE Computer Society Press, Los Alamitos (1984)

    Google Scholar 

  25. Ullman, J., Yannakakis, M.: High-probability parallel transitive-closure algorithms. SIAM Journal on Computing 20(1), 100–125 (1991)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Luděk Kučera Antonín Kučera

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Demetrescu, C., Escoffier, B., Moruz, G., Ribichini, A. (2007). Adapting Parallel Algorithms to the W-Stream Model, with Applications to Graph Problems. In: Kučera, L., Kučera, A. (eds) Mathematical Foundations of Computer Science 2007. MFCS 2007. Lecture Notes in Computer Science, vol 4708. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74456-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74456-6_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74455-9

  • Online ISBN: 978-3-540-74456-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics