Abstract
We present a novel method for detecting hit-list worms using protocol graphs. In a protocol graph, a vertex represents a single IP address, and an edge represents communications between those addresses using a specific protocol (e.g., HTTP). We show that the protocol graphs of four diverse and representative protocols (HTTP, FTP, SMTP, and Oracle), as constructed from monitoring for fixed durations on a large intercontinental network, exhibit stable graph sizes and largest connected component sizes. Moreover, we demonstrate that worm propagations, even of a sophisticated hit-list variety in which the attacker has advance knowledge of his targets and always connects successfully, perturb these properties. We demonstrate that these properties can be monitored very efficiently even in very large networks, giving rise to a viable and novel approach for worm detection. We also demonstrate extensions by which the attacking hosts (bots) can be identified with high accuracy.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer Algorithms. Addison-Wesley, Reading (1975)
Aiello, W., Chung, F., Lu, L.: A random graph model for massive graphs. In: Proceedings of the 32nd ACM Symposium on Theory of Computing, pp. 171–180. ACM Press, New York (2000)
Antonatos, S., Akritidis, P., Markatos, E.P., Anagnostakis, K.G.: Defending against hitlist worms using network address space randomization. In: WORM 2005: Proceedings of the 2005 ACM Workshop on Rapid Malcode, New York, NY, USA, pp. 30–40. ACM Press, New York (2005)
Broder, A., Kumar, R., Maghoul, F., Raghavan, P., Rajagopalan, S., Stata, R., Tomkins, A., Wiener, J.: Graph structure in the web. In: Proc. of the WWW9 Conference, Amsterdam, Holland, pp. 309–320 (2000)
Chen, S., Tang, Y.: Slowing down Internet worms. In: Proceedings of the 24th International Conference on Distributed Computing Systems, Tokyo, Japan, March 2004, pp. 312–319 (2004)
Ellis, D., Aiken, J., McLeod, A., Keppler, D., Amman, P.: Graph-based worm detection on operational enterprise networks. Technical Report MTR-06W0000035, MITRE Corporation (April 2006)
Galil, Z., Italiano, G.F.: Data structures and algorithms for disjoint set union problems. ACM Computing Surveys 23, 319–344 (1991)
Jung, J., Paxson, V., Berger, A.W., Balakrishnan, H.: Fast portscan detection using sequential hypothesis testing. In: Proceedings of the 2004 IEEE Symposium on Security and Privacy, May 2004, IEEE Computer Society Press, Los Alamitos (2004)
Karagiannis, T., Papagiannaki, K., Faloutsos, M.: BLINC: multilevel traffic classification in the dark. In: Proceedings of ACM SIGCOMM 2005, New York, NY, USA, pp. 229–240. ACM Press, New York (2005)
Kreyszig, E.: Advanced Engineering Mathematics, 9th edn. J. Wiley and Sons, Chichester (2005)
Kumar, A., Paxson, V., Weaver, N.: Exploiting underlying structure for detailed reconstruction of an Internet scale event. In: Proceedings of the ACM Internet Measurement Conference, New Orleans, LA, USA, October 2005, ACM Press, New York (2005)
Lakkaraju, K., Yurcik, W., Lee, A.: NVisionIP: NetFlow visualizations of system state for security situational awareness. In: Proceedings of the 2004 Workshop on Visualization for Computer Security (October 2006)
Pouwelse, J., Garbacki, P., Epema, D., Sips, H.: A measurement study of the BitTorrent peer-to-peer file-sharing system. Technical Report PDS-2004-007, Delft University of Technology (April 2004)
Ripeanu, M., Foster, I., Iamnitchi, A.: Mapping the gnutella network: Properties of large-scale peer-to-peer systems and implications for system design. IEEE Internet Computing 6(1) (2002)
Saroiu, S., Gummadi, P.K., Gribble, S.D.: A measurement study of peer-to-peer file sharing systems. In: Proceedings of Multimedia Computing and Networking 2002, San Jose, CA, USA (2002)
Schechter, S., Jung, J., Berger, A.: Fast detection of scanning worm infections. In: Jonsson, E., Valdes, A., Almgren, M. (eds.) RAID 2004. LNCS, vol. 3224, pp. 59–81. Springer, Heidelberg (2004)
Sekar, V., Xie, Y., Reiter, M.K., Zhang, H.: A multi-resolution approach to worm detection and containment. In: Proceedings of the 2006 International Conference on Dependable Systems and Networks, June 2006, pp. 189–198 (2006)
Shannon, C., Moore, D.: The spread of the Witty worm. IEEE Security and Privacy 2(4), 46–50 (2004)
Singh, S., Estan, C., Varghese, G., Savage, S.: Automated worm fingerprinting. In: Proceedings of the ACM/USENIX Symposium on Operating System Design and Implementation, December 2005, ACM Press, New York (2005)
Staniford, S., Paxson, V., Weaver, N.: How to 0wn the Internet in your spare time. In: Proceedings of the 11th USENIX Security Symposium, August 2002, pp. 149–167 (2002)
Staniford-Chen, S., Cheung, S., Crawford, R., Dilger, M., Frank, J., Hoagland, J., Levitt, K., Wee, C., Yip, R., Zerkle, D.: GrIDS – A graph-based intrusion detection system for large networks. In: Proceedings of the 19th National Information Systems Security Conference, pp. 361–370 (1996)
Stolfo, S.J., Hershkop, S., Hu, C., Li, W., Nimeskern, O., Wang, K.: Behavior-based modeling and its application to email analysis. ACM Transactions on Internet Technology 6(2), 187–221 (2006)
Tarjan, R.E.: Data Structures in Network Algorithms. In: Regional Conference Series in Applied Mathematics, Society for Industrial and Applied Mathematics, vol. 44 (1983)
Twycross, J., Williamson, M.W.: Implementing and testing a virus throttle. In: Proceedings of the 12th USENIX Security Symposium, August 2003, pp. 285–294 (2003)
Wright, C., Monrose, F., Masson, G.: Using visual motifs to classify encrypted traffic. In: Proceedings of the 2006 Workshop on Visualization for Computer Security (November 2006)
Yin, X., Yurcik, W., Treaster, M.: VisFlowConnect: NetFlow visualizations of link relationships for security situational awareness. In: Proceedings of the 2004 Workshop on Visualization for Computer Security (October 2006)
Zou, C., Gao, L., Gong, W., Towsley, D.: Monitoring and early warning for Internet worms. In: Proceedings of the 10th ACM Conference on Computer and Communications Security, New York, NY, USA, pp. 190–199. ACM Press, New York (2003)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Collins, M.P., Reiter, M.K. (2007). Hit-List Worm Detection and Bot Identification in Large Networks Using Protocol Graphs. In: Kruegel, C., Lippmann, R., Clark, A. (eds) Recent Advances in Intrusion Detection. RAID 2007. Lecture Notes in Computer Science, vol 4637. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74320-0_15
Download citation
DOI: https://doi.org/10.1007/978-3-540-74320-0_15
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-74319-4
Online ISBN: 978-3-540-74320-0
eBook Packages: Computer ScienceComputer Science (R0)