Abstract
This paper presents a new hybrid split-and-merge image segmentation method based on computational geometry and topology using persistent homology. The algorithm uses edge-directed topology to initially split the image into a set of regions based on the Delaunay triangulations of the points in the edge map. Persistent homology is used to generate three types of regions: p-persistent regions, p-transient regions, and d-triangles. The p-persistent regions correspond to core objects in the image, while p-transient regions and d-triangles are smaller regions that may be combined in the merge phase, either with p-persistent regions to refine the core or with other p-transient and d-triangles regions to potentially form new core objects. Performing image segmentation based on topology and persistent homology guarantees several nice properties, and initial results demonstrate high quality image segmentation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Canny, J.: A Computational Approach To Edge Detection. IEEE Trans. Pattern Analysis and Machine Intelligence 8, 679–714 (1986)
Edelsbrunner, H.: Algorithms in Combinatorial Geometry. Springer, New York (1987)
Edelsbrunner, H.: The Union of Balls and its Dual Shape. In: Proceedings of the Ninth Annual Symposium on Computational Geometry, pp. 218–231 (1993)
Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological Persistence and Simplification. Discrete and Computational Geometry 28, 511–533 (2002)
Fortune, S.: A Sweepline Algorithm for Voronoi Diagrams. Algorithmica 2, 153–174 (1987)
Gevers, T., Smeulders, A.W.M.: Combining Region Splitting and Edge Detection through Guided Delaunay Image Subdivision. In: Proc. of the 1997 International Conference on Computer Vision and Pattern Recognition, pp. 1021–1026 (1997)
Guibas, L., Knuth, D., Sharir, M.: Randomized Incremental Construction of Delaunay and Voronoi Diagrams. Algorithmica 7, 381–413 (1992)
Mallat, S., Zhong, S.: Characterization of signals from Multiscale Edges. IEEE Trans. Patt. Anal. and Mach. Intell. 14, 710–732 (1992)
Massey, W.: A Basic Course in Algebraic Topology. Springer, Heidelberg (1991)
Prasad, L., Skourikhine, A.N.: Vectorized Image Segmentation via Trixel Agglomeration. In: Brun, L., Vento, M. (eds.) GbRPR 2005. LNCS, vol. 3434, pp. 12–22. Springer, Heidelberg (2005)
Stelldinger, P., Ullrich, K., Meine, H.: Topologically Correct Image Segmentation Using Alpha Shapes. In: Kuba, A., Nyúl, L.G., Palágyi, K. (eds.) DGCI 2006. LNCS, vol. 4245, pp. 542–554. Springer, Heidelberg (2006)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Letscher, D., Fritts, J. (2007). Image Segmentation Using Topological Persistence. In: Kropatsch, W.G., Kampel, M., Hanbury, A. (eds) Computer Analysis of Images and Patterns. CAIP 2007. Lecture Notes in Computer Science, vol 4673. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74272-2_73
Download citation
DOI: https://doi.org/10.1007/978-3-540-74272-2_73
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-74271-5
Online ISBN: 978-3-540-74272-2
eBook Packages: Computer ScienceComputer Science (R0)