Abstract
We address the problem of nonrigid Structure from Motion (SfM). Several methods have been published recently which try to solve the task of tracking, segmenting, or reconstructing nonrigid 3D objects in motion. Most of these papers focus on deformable objects. We deal with the segmentation of articulated objects, that is, nonrigid objects composed of several moving rigid objects. We consider two moving objects and assume that the rigid SfM problem has been solved for each of them separately. We propose a method which helps to decide whether an object is rotating around an axis defined by another moving object. The theories of the proposed method is discussed in detail. Experimental results for synthetic and real data are presented.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Tomasi, C., Kanade, T.: Shape and Motion from Image Streams under orthography: A factorization approach. Intl. Journal Computer Vision 9, 137–154 (1992)
Weinshall, D., Tomasi, C.: Linear and Incremental Acquisition of Invariant Shape Models From Image Sequences. IEEE Trans. on PAMI 17(5), 512–517 (1995)
Poelman, C.J., Kanade, T.: A Paraperspective Factorization Method for Shape and Motion Recovery. IEEE Trans. on PAMI 19(3), 312–322 (1997)
Sturm, P., Triggs, B.: A Factorization Based Algorithm for Multi-Image Projective Structure and Motion. In: Buxton, B.F., Cipolla, R. (eds.) ECCV 1996. LNCS, vol. 1064, pp. 709–720. Springer, Heidelberg (1996)
Trajković, M., Hedley, M.: Robust Recursive Structure and Motion Recovery under Affine Projection. In: Proc. British Machine Vision Conference (September 1997)
Kurata, T., Fujiki, J., Kourogi, M., Sakaue, K.: A Robust Recursive Factorization Method for Recovering Structure and Motion from Live Video Frames. In: IEEE ICCV Frame-Rate Workshop (September 1999)
Torr, P.H., Murray, D.W.: Outlier detection and motion segmentation. In: Arcelli, C., Cordella, L.P., Sanniti di Baja, G. (eds.) Visual Form 2001. LNCS, vol. 2059, pp. 432–443. Springer, Heidelberg (2001)
Torr, P.H.S., Zisserman, A., Murray, D.W.: Motion clustering using the trilinear constraint over three views. In: Europe-China Workshop on Geometrical Modelling and Invariants for Computer Vision, pp. 118–125 (1995)
Kanatani, K.: Motion Segmentation by Subspace Separation and Model Selection. In: ICCV, 586–591 (2001)
Hajder, L., Chetverikov, D.: Robust 3D Segmentation of Multiple Moving Objects Under Weak Perspective. In: ICCV Workshop on Dynamical Vision, CD ROM (2005)
Brand, M., Bhotika, R.: Flexible Flow for 3D Nonrigid Tracking and Shape Recovery. In: IEEE Conf. on Computer Vision and Pattern Recognition. vol. 1, pp. 312–322 (December 2001)
Torresani, L., Yang, D., Alexander, E., Bregler, C.: Tracking and Modelling Nonrigid Objects with Rank Constraints. In: IEEE Conf. on Computer Vision and Patter Recognition (2001)
Xiao, J., Chai, J.X., Kanade, T.: A closed-form solution to non-rigid shape and motion recovery. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3024, pp. 573–587. Springer, Heidelberg (2004)
Xlad, X., Del Bue, A., Agapito, L.: Non-rigid factorization for projective reconstruction. In: British Machine Vision Conference, pp. 169–178 (2005)
Gander, W., Golub, G.H., Strebel, R.: Least-squares fitting of circles and ellipses. In: Numerical analysis (in honour of Jean Meinguet), pp. 63–84 (1996)
Taubin, G.: Estimation of planar curves, surfaces, and nonplanar space curves defined by implicit equations with applications to edge and range image segmentation. IEEE Trans. on PAMI 13(11), 1115–1138 (1991)
Fitzgibbon, A.W., Pilu, M., Fisher, R.B.: Direct least square fitting of ellipses. IEEE Trans. on PAMI 21(5), 476–480 (1999)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hajder, L. (2007). Grouping of Articulated Objects with Common Axis. In: Kropatsch, W.G., Kampel, M., Hanbury, A. (eds) Computer Analysis of Images and Patterns. CAIP 2007. Lecture Notes in Computer Science, vol 4673. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74272-2_14
Download citation
DOI: https://doi.org/10.1007/978-3-540-74272-2_14
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-74271-5
Online ISBN: 978-3-540-74272-2
eBook Packages: Computer ScienceComputer Science (R0)