[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Iterated Fourier Transform Systems: A Method for Frequency Extrapolation

  • Conference paper
Image Analysis and Recognition (ICIAR 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4633))

Included in the following conference series:

  • 2384 Accesses

Abstract

In this paper we introduce a fractal-based method over (complex-valued) Fourier transforms of functions with compact support \(X \subset \Re\). This method of “iterated Fourier transform systems” (IFTS) has a natural mathematical connection with the fractal-based method of “iterated function systems with greyscale maps” (IFSM) in the spatial domain [6,7]. A major motivation for our formulation is the problem of resolution enhancement of band-limited magnetic resonance images. In an attempt to minimize sampling/transform artifacts, it is our desire to work directly with the raw frequency data provided by an MR imager as much as possible before ‘“returning” to the spatial domain. In this paper, we show that our fractal-based IFTS method can be tailored to perform frequency extrapolation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Barnsley, M.F., Ervin, V., Hardin, D., Lancaster, J.: Solution of an inverse problem for fractals and other sets. Proc. Nat. Acad. Sci. 83, 1975–1977 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  2. Barnsley, M.F., Hurd, L.P.: Fractal Image Compression. A.K. Peters, Wellesley, MA (1993)

    Google Scholar 

  3. Bracewell, R.: The Fourier Transform and its Applications, 2nd edn. McGraw-Hill, New York (1978)

    MATH  Google Scholar 

  4. Fisher, Y.: Fractal Image Compression. Springer, New York (1995)

    Google Scholar 

  5. Forte, B., Vrscay, E.R.: Solving the inverse problem for measures using iterated function systems: A new approach. Adv. Appl. Prob. 27, 800–820 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  6. Forte, B., Vrscay, E.R.: Theory of generalized fractal transforms. In: Fisher, Y. (ed.) Fractal Image Encoding and Analysis. NATO ASI Series F, vol. 159, Springer, New York (1998)

    Google Scholar 

  7. Forte, B., Vrscay, E.R.: Inverse problem methods for generalized fractal transforms, In: Fractal Image Encoding and Analysis, ibid.

    Google Scholar 

  8. Gerchberg, R.W.: Super-resolution through Error Energy Reduction. Optica Acta 21(9), 709–720 (1974)

    Google Scholar 

  9. Haacke, M.E., Brown, R.W., Thompson, M.R., Venkatesan, R.: Magnetic Resonance Imaging: Physical Principles and Sequence Design. John Wiley & Sons, Inc, USA (1999)

    Google Scholar 

  10. Hinshaw, W., Lent, A.: An Introduction to NMR Imaging: From the Bloch Equation to the Imaging Equation. Proceedings of the IEEE 71(3), 338–350 (1983)

    Article  Google Scholar 

  11. Jain, A., Ranganath, S.: Extrapolation Algorithms for Discrete Signals with Application in Spectral Estimation. IEEE Trans. ASSP 29(4), 830–845 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  12. Liang, Z., Boada, F.E., Constable, R.R., Haacke, M.E., Lauterbur, P.C., Smith, M.R.: Constrained Reconstruction Methods in MR Imaging. Rev. Mag. Res. Med. 4, 67–185 (1992)

    Google Scholar 

  13. Liang, Z., Lauterbur, P.C.: Principles of Magnetic Resonance Imaging, A Signal Processing Perspective. IEEE Press, New York (2000)

    Google Scholar 

  14. Lu, N.: Fractal Imaging. Academic Press, New York (1997)

    MATH  Google Scholar 

  15. McGibney, G., Smith, M.R., Nichols, S.T., Crawley, A.: Quantitative Evaluation of Several Partial Fourier Reconstruction Algorithms Used in MRI. Mag. Res. Med. 30, 51–59 (1993)

    Article  Google Scholar 

  16. Papoulis, A.: A New Algorithm in Spectral Analysis and Band-Limited Extrapolation. IEEE Trans. Cir. Sys. 22(9), 735–742 (1975)

    Article  MathSciNet  Google Scholar 

  17. Slepian, D., Pollack, H.O.: Prolate Spheroidal Wave Functions, Fourier Analysis and Uncertainty - I. Bell System Tech. J., pp. 43-63 (1961)

    Google Scholar 

  18. Youla, D.: Generalized Image Restoration by the Method of Alternating Orthogonal Projections. IEEE Trans. Cir. Sys. 25(9) (1978)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Mohamed Kamel Aurélio Campilho

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mayer, G.S., Vrscay, E.R. (2007). Iterated Fourier Transform Systems: A Method for Frequency Extrapolation. In: Kamel, M., Campilho, A. (eds) Image Analysis and Recognition. ICIAR 2007. Lecture Notes in Computer Science, vol 4633. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74260-9_65

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74260-9_65

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74258-6

  • Online ISBN: 978-3-540-74260-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics