[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4682))

Included in the following conference series:

  • 1316 Accesses

Abstract

In this paper, starting from the structure of fuzzy information, by distinguishing principal indexes and assistant indexes, give comparison of fuzzy information on synthesizing effect and operation of fuzzy optimization on principal indexes transformation, further, propose axiom system of fuzzy inequity degree from essence of constraint, and give an instructive metric method; Then, combining genetic algorithm, give fuzzy optimization methods based on principal operation and inequity degree (denoted by BPO&ID-FGA, for short); Finally, consider its convergence using Markov chain theory and analyze its performance through an example. All these indicate, BPO&ID-FGA can not only effectively merge decision consciousness into the optimization process, but possess better global convergence, so it can be applied to many fuzzy optimization problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 143.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Tang, J.F., Wang, D.W.: Fuzzy Optimization Theory and Methodology Survey. Control Theory and Application 17, 159–164 (2000)

    MathSciNet  Google Scholar 

  2. Cadenas, J.M., Verdegay, J.L.: Using Ranking Functions in Multiobjective Fuzzy Linear Programming. Fuzzy Sets and Systems 111, 47–531 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  3. Maleki, H.R., Tala, M., Mashinchi, M.: Linear Programming with Fuzzy Variables. Fuzzy Sets and Systems 109, 21–33 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  4. Tanaka, H.: Fuzzy Data Analysis by Possibillistic Linear Models. Fuzzy Sets and Systems 24, 363–375 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  5. Kuwano, H.: On the Fuzzy Multi-objective Linear Programming Problem: Goal Programming Approach. Fuzzy Sets and Systems 82, 57–64 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  6. Leu, S.S., Chen, A.T., Yang, C.H.: A GA-Based Fuzzy Optimal Model For Construction Time-Cost Trade-Off. International Journal of Project Management 19, 47–58 (2001)

    Article  Google Scholar 

  7. Tang, J.F., Wang, D.W., Fung, R.Y.K.: Modeling and Method Based on GA For Nonlinear Programming Problems With Fuzzy Objective and Resources. International Journal of System Science 29, 907–913 (1998)

    Article  MATH  Google Scholar 

  8. Buckley, J.J., Feuring, T.: Evolutionary Algorithm Solution to Fuzzy Problems: Fuzzy Linear Programming. Fuzzy Sets and Systems 109, 35–53 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  9. Zhang, K.L., Hirota, K.: On Fuzzy Number-Lattice. Fuzzy Sets and Systems 92, 113–122 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  10. Liu, M., Li, F.C., Wu, C.: The Order Structure of Fuzzy Numbers Based on The Level Characteristic and Its Application in Optimization Problems. Science in China (Series F) 45, 433–441 (2002)

    MATH  MathSciNet  Google Scholar 

  11. Kim, K., Park, K.S.: Ranking Fuzzy Numbers with Index of Optimism. Fuzzy Sets Systems 35, 143–150 (1990)

    Article  Google Scholar 

  12. Wang, H.L.-K., Lee, J.-H.: A Method for Ranking Fuzzy Numbers and Its Application to Decision- Making. IEEE Transactions on Fuzzy Systems 7, 677–685 (1999)

    Article  Google Scholar 

  13. Tseng, T.Y., Klein, C.M.: New Algorithm for the Ranking Procedure in Fuzzy Decision Making. IEEE Trans. Syst. Man and Cybernetics 19, 1289–1296 (1989)

    Article  MathSciNet  Google Scholar 

  14. Yager, R.R.: Procedure for Ordering Fuzzy Subsets of the Unit Interval. Information Science 24, 141–161 (1981)

    Article  MathSciNet  Google Scholar 

  15. Cheng, C.H.: A New Approach for Ranking Fuzzy Numbers by Distance Method. Fuzzy Sets and Systems 95, 307–317 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  16. Diamond, P., Kloeden, P.: Metric Space of Fuzzy Set: Theory and Applications. Word Scientific, Singapore (1994)

    Google Scholar 

  17. Li, F.C., Yue, P.X., Su, L.Q.: Research on the Convergence of Fuzzy Genetic Algorithms Based on Rough Classification. In: Proceedings of the Second International Conference on Natural Computation and the Third International Conference on Fuzzy Systems and Knowledge Discovery, pp. 792–795 (2006)

    Google Scholar 

  18. Ishbuchi, H., Tanaka, H.: Formulation and Analysis of Linear Programming Problem with Interval Coefficients. Journal of Japan Industrial Management Association 40, 320–329 (1989)

    Google Scholar 

  19. Li, F.C., Liu, M., Wu, C.: Fuzzy Optimization Problems Based on Inequality Degree. In: IEEE International Conference on Machine Learning and Cybernetics, Beijing, vol. 3. pp. 1566–1570 (2002)

    Google Scholar 

  20. Holland, J.H.: Genetic Algorithms and the Optimal Allocations of Trials. SIAMJ of Computing 2, 8–105 (1973)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

De-Shuang Huang Laurent Heutte Marco Loog

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, F., Jin, C. (2007). Fuzzy Genetic Algorithm Based on Principal Operation and Inequity Degree. In: Huang, DS., Heutte, L., Loog, M. (eds) Advanced Intelligent Computing Theories and Applications. With Aspects of Artificial Intelligence. ICIC 2007. Lecture Notes in Computer Science(), vol 4682. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74205-0_64

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74205-0_64

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74201-2

  • Online ISBN: 978-3-540-74205-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics