[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Robust Human Face Detection for Moving Pictures Based on Cascade-Typed Hybrid Classifier

  • Conference paper
Advanced Intelligent Computing Theories and Applications. With Aspects of Artificial Intelligence (ICIC 2007)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4682))

Included in the following conference series:

  • 1798 Accesses

Abstract

Face detection has been a key step in face analysis systems for decades. However, it is still a challenging task due to the variation in image background, view, pose, facial expression, etc. This paper proposes a simple and effective tool to detect human faces in moving pictures under such conditions. An improved approach aiming to reduce impacts of illumination, scale and connection of faces to receive rapidly skin homogeneous regions considered as the most potential face candidates is presented. A cascade-typed hybrid classifier, applied in retrieved face candidates, is based on template matching and appearance-based method providing a robust detection of multiply posed and viewed faces. This verification achieves advantages of the powerful discrimination of Local Binary Patterns (LBPs) and the high speed detection capability of embedded Hidden Markov Models (eHMMs). Experiments were performed out with different image databases and video sequences so that the system shows effective to detect human face for real-time uses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Albiot, A., Torres, L., Bournan, A.C., Delp, E.J.: A Simple and Efficient Face Detection Algorithm for Video database Applications. In: ICIP, vol. 2, pp. 239–242 (2000)

    Google Scholar 

  2. Czirjek, C., O’Connor, N., Marlow, S., Murphy, N.: Face Detection and Clustering for Video Indexing Applications. Advanced Concepts for Intelligent Vision Systems, Belgium (2003)

    Google Scholar 

  3. Gacia, C., Tziritas, G.: Face Detection using Quantized Skin Color Regions, Merging and Wavelet Packet Analysis. IEEE Transaction on Multimedia 1, 264–277 (1999)

    Article  Google Scholar 

  4. Gorodnichy, D.O.: Facial Recognition in Video. In: Kittler, J., Nixon, M.S. (eds.) AVBPA 2003. LNCS, vol. 2688, pp. 505–514. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  5. Gorodnichy, D.O.: Video-based Framework for Face Recognition in Video. In: Proc. Second Canadian Conference on Computer and Robot Vision, Canada, pp. 330–338 (2005)

    Google Scholar 

  6. Hall, E.T.: Hidden Dimension. Doubleday Publishing (1996) ISBN 0385084765

    Google Scholar 

  7. Lang, S., Kleinehagenbrock, M., Hohenner, S., Fritsch, J., Fink, G.A., Sagerer, G.: Providing The Basis for Human-robot-interaction: A Multi-model Attention System for a Mobile Robot. In: Proceeding of the International Conference on Multimodal Interfaces, Canada, pp. 28–35 (2003)

    Google Scholar 

  8. Lin, C., Fan, K.C.: A Color-triangle-based Approach to The Detection of Human Face. In: Bülthoff, H.H., Poggio, T.A., Lee, S.-W. (eds.) BMCV 2000. LNCS, vol. 1811, pp. 359–368. Springer, Heidelberg (2000)

    Google Scholar 

  9. Liposcak, Z., Loncarie, S.: Prediction-and-Verification for Face Detection. In: Proceeding of IWISPA, Croatia, pp. 415–438 (2000)

    Google Scholar 

  10. Mikolajczyk, K., Choudhury, R., Schimid, C.: Face Detection in Video Sequence - A Temporal Approach. In: Proceeding of the IEEE Computer Society Conference on CPVR, Hawaii, vol. 2, pp. 96–101 (2001)

    Google Scholar 

  11. Nefian, A., Hayes, M.: Face Recognition using an Embedded HMM. In: Proceeding of IEEE Audio and Video-based Biometric Person Authentication, USA, pp. 19–44. IEEE Computer Society Press, Los Alamitos (1999)

    Google Scholar 

  12. Peer, P., Kovac, N., Solina, F.: Human Skin Colour Clustering for Face Detection. EUROCON 2, 144–148 (2003)

    Google Scholar 

  13. Séguier, R., Glaunec, A.L, Loriferne, B.: Human Faces Detection and Tracking in Video Sequence. In: Proceeding of the 7th Portuguese Conference on Pattern Recognition (1995)

    Google Scholar 

  14. Séguier, R.: A Very Fast Adaptive Face Detection System. In: International Conference on Visualization, Imaging and Image Processing (2004)

    Google Scholar 

  15. Shapiro, L.G., Stockman, G.C.: Computer Vision. Prentice Hall, New Jersey (2001)

    Google Scholar 

  16. Tasaki, T.,Komatani, K., Ogata, T., Okuno, H.G.: Spatially Mapping of Friendliness for Human-robot Interaction. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2005), Canada, pp. 1277–1282 (2005)

    Google Scholar 

  17. Tsapatsoulis, N., Kollias, S.: Face Detection in Color Images and Video Sequences. In: Proceeding of the 10th Mediterranean Electrotechnical Conference MEleCon, Vol. II, Greece, pp. 498–501 (2000)

    Google Scholar 

  18. Vezhnevets, V., Sazonov, V., Andreeva, A.: A Survey on Pixel-based Skin Color Detection Techniques. In: Proceeding of Graphicon, Moscow, pp. 850–92 (2003)

    Google Scholar 

  19. Vilaplana, V., Marques, F., Salembier, P., Garrido, L.: Region-based Segmentation and Tracking of Human Faces. European Signal Processing. Rhodes, 593–602 (1998)

    Google Scholar 

  20. Wang, H., Chang, S.-F.: A Highly Efficient System for Automatic Face Region Detection in mpeg Video. IEEE Transaction on Circuit and Systems for Video Technology 7 (1997)

    Google Scholar 

  21. Yang, M.H., Ahuja, N.: Detecting Human Faces in Color Image. In: IEEE International Conference on Image Processing, Chicago, pp. 127–130. IEEE Computer Society Press, Los Alamitos (1998)

    Google Scholar 

  22. Yang, M.H., Kriegman, D.J., Ahuja, N.: Detecting Faces in Images: A Survey. IEEE Trans. On PAMI 24, 34–58 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

De-Shuang Huang Laurent Heutte Marco Loog

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pham-Ngoc, PT., Kim, TH., Jo, KH. (2007). Robust Human Face Detection for Moving Pictures Based on Cascade-Typed Hybrid Classifier. In: Huang, DS., Heutte, L., Loog, M. (eds) Advanced Intelligent Computing Theories and Applications. With Aspects of Artificial Intelligence. ICIC 2007. Lecture Notes in Computer Science(), vol 4682. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74205-0_115

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74205-0_115

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74201-2

  • Online ISBN: 978-3-540-74205-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics