[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4681))

Included in the following conference series:

Abstract

An inter-scale adaptive, data-driven threshold for image denoising via wavelet soft-thresholding is proposed. To get the optimal threshold, a Bayesian estimator is applied to the wavelet coefficients. The threshold is based on the accurate modeling of the distribution of wavelet coefficients using generalized Gaussian distribution (GGD), and the near exponential prior of the wavelet coefficients across scales. The new approach outperforms BayesShrink because it captures the statistical inter-scale property of wavelet coefficients, and is more adaptive to the data of each subband. Simulation results show that higher peak-signal-to-noise ratio can be obtained as compared to other thresholding methods for image denoising.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 103.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Donoho, D.L.: De-noising by Soft-thresholding. IEEE Transactions on Information Theory 41(3), 613–627 (1995)

    Article  MATH  Google Scholar 

  2. Donoho, D.L., Johnstone, I.M.: Ideal Spatial Adaptation via Wavelet Shrinkage. Biometrika 81, 425–455 (1994)

    Article  MATH  Google Scholar 

  3. Donoho, D.L., Johnstone, I.M.: Adapting to Unknown Smoothness via Wavelet Shrinkage. Journal of the American Statistical Assoc. 90(432), 1200–1224 (1995)

    Article  MATH  Google Scholar 

  4. Birge, L., Massart, P.: From Model Selection to Adaptive Estimation. In: Pollard, D., Yang, G. (eds.) Research Papers in Probability and Statistics: Festschrift for Lucien Le Cam, pp. 55–88. Springer, New York (1996)

    Google Scholar 

  5. Chang, S.G., Yu, B., Vetterli, M.: Adaptive Wavelet Thresholding for Image Denoising and Compression. IEEE Transactions on Image Processing 9(9), 1532–1546 (2000)

    Article  MATH  Google Scholar 

  6. MihScak, M.K., Kozintsev, I., Ramchandran, K., Moulin, P.: Low-complexity Image Denoising based on Statistical Modeling of Wavelet Coefficients. IEEE Signal Process. Lett. 6(12), 300–303 (1999)

    Article  Google Scholar 

  7. MihScak, M.K., Kozintsev, I., Ramchandran, K.: Spatially Adaptive Statistical Modeling of Wavelet Image Coefficients and its Application to Denoising. In: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, Phoenix, AZ, vol. 6, pp. 3253–3256 (1999)

    Google Scholar 

  8. Rahman, S.M., Hasan, M.K.: Wavelet-domain Iterative Center Weighted Median Filter for Image Denoising. Signal Processing 83(5), 1001–1012 (2003)

    Article  Google Scholar 

  9. Yoo, Y., Ortega, A., Yu, B.: Image Subband Coding using Contextbased Classification and Adaptive Quantization. IEEE Transactions on Image Processing 8(12), 1702–1715 (1999)

    Article  Google Scholar 

  10. Chang, S.G., Yu, B., Vetterli, M.: Spatially Adaptive Wavelet Thresholding with Context Modeling for Image Denoising. IEEE Transactions on Image Processing 9(9), 1522–1531 (2000)

    Article  MATH  Google Scholar 

  11. Crouse, M., Nowak, R., Baraniuk, R.: Wavelet-based Statistical Signal Processing using Hidden Markov Models. IEEE Transactions on Signal Processing 42(4), 886–902 (1998)

    Article  Google Scholar 

  12. Fan, G., Xia, X.G.: Image Denoising using a Local Contextual Hidden Markov Model in the Wavelet Domain. IEEE Signal Processing Lett. 8(5), 125–128 (2001)

    Article  Google Scholar 

  13. Shapiro, J.M.: Embedded Image Coding using Zerotrees of Wavelet Coefficients. IEEE Transactions on Signal Processing 41(12), 3445–3462 (1993)

    Article  MATH  Google Scholar 

  14. Sendur, L., Selesnick, I.W.: Bivariate Shrinkage Functions for Wavelet-based Denoising Exploiting Interscale Dependency. IEEE Transactions On Signal Processing 50(11), 2744–2756 (2002)

    Article  Google Scholar 

  15. Xionc, Z., Ramchandran, K., Orchard, M.T.: Space-frequency Quantization for Wavelet Image Coding. IEEE Transactions on Image Processing 6(9), 677–693 (1997)

    Article  Google Scholar 

  16. Cai, Z., Cheng, T.H., Lu, C., Subramanium, K.R.: Efficient Wavelet-based Image Denoising Algorithm. Electron. Lett. 37(11), 683–685 (2001)

    Article  Google Scholar 

  17. Chen, Y., Zhao, H.C.: Adaptive Wavelet Thresholding for Image Denoising. Electron. Lett. 41(10), 586–587 (2005)

    Article  Google Scholar 

  18. Moulin, P., Liu, J.: Analysis of Multiresolution Image Denoising Schemes using Generalized Gaussian and Complexity Priors. IEEE Transactions on Information Theory 45(3), 909–919 (1999)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

De-Shuang Huang Laurent Heutte Marco Loog

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Chen, Y., Lei, L., Ji, ZC., Sun, JF. (2007). Adaptive Wavelet Threshold for Image Denoising by Exploiting Inter-scale Dependency. In: Huang, DS., Heutte, L., Loog, M. (eds) Advanced Intelligent Computing Theories and Applications. With Aspects of Theoretical and Methodological Issues. ICIC 2007. Lecture Notes in Computer Science, vol 4681. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74171-8_87

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74171-8_87

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74170-1

  • Online ISBN: 978-3-540-74171-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics