[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4681))

Included in the following conference series:

Abstract

In this paper, two new properties of singular value decomposition (SVD) on images are proved. The first property demonstrates the quantitative relationship between singular values and power spectrum. The second one proves that under the condition of losing equal power spectrum, the square-error of the reconstructed image is much smaller when we reduce all singular values proportionally instead of neglect the smaller ones. Based on the two properties, a new data-hiding scheme is proposed. It performs well as for robustness, for it satisfies power-spectrum condition (PSC), and PSC-compliant watermarks are proven to be most robust. Besides, the proposed scheme has a good performance as for capacity and adaptability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 103.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Fabien, A.P., Petitcolas, R.J., Anderson, M., Kuhn, G.: Information Hiding - A Survey. Proceedings of the IEEE 87(7), 1062–1078 (1999)

    Article  Google Scholar 

  2. Schyndel, R.G., Tirkel, A.Z., Osborne, C.F.: A Digital Watermark. Proceedings of IEEE International Conference on Image Processing 2, 86–90 (1994)

    Article  Google Scholar 

  3. Barni, M., Bartolini, F., Cappellini, V., Piva, A.: A DCT-Domain System for Robust Image Watermarking. Signal Processing 66, 357–372 (1998)

    Article  MATH  Google Scholar 

  4. Suhail, M.A., Obaidat, M.S.: Digital Watermarking-Based DCT and JPEG Model. IEEE Transactions on Instrumentation and Measurement 52, 1640–1647 (2003)

    Article  Google Scholar 

  5. Hsieh, M.S., Tseng, D.C.: Hiding Digital Watermarks Using Multiresolution Wavelet Transform. IEEE Transactions on Industrial Electronics 48, 875–882 (2001)

    Article  Google Scholar 

  6. Meerwald, P., Uhl, A.: A Survey of Wavelet-Domain Watermarking Algorithms. Proceedings of SPIE, Electronic Imaging, Security and Watermarking of Multimedia Contents III, 4314 (2001)

    Google Scholar 

  7. Gorodetski, V., Skormin, L.P.: SVD based Approach to Transparent Embedding Data into Digital Images, pp. 263–274. Springer, Heidelberg (2001)

    Google Scholar 

  8. Chandra, D.V.S.: Digital Image Watermarking using Singular Value Decomposition. Proceedings of 45th IEEE Midwest Symposium on Circuits and Systems, pp. 264–267 (2002)

    Google Scholar 

  9. Emir, G., Nasir, Z., Eskicioglu, A.M.: An Optimal Watermarking Scheme based on Singular Value Decomposition. In: Proceedings of the IASTED of International Conference on Communication, Network, and Information Security, pp. 85–90 (2003)

    Google Scholar 

  10. Seungjae, L., Jang, D.W., Chang, D.Y.: A SVD based Watermarking Method for Image Content Authentication with Improved Security. In: Proceeding of ICASSP, pp. 525–528 (2005)

    Google Scholar 

  11. Ganic, E., Eskicioglu, A.M.: Robust Embedding of Visual Watermarks using DWT-SVD. Journal of Electronic Imaging 14(4) (2005)

    Google Scholar 

  12. Dapena, A., Ahalt, S.: A Hybrid DCT-SVD Image-coding Algorithm. IEEE Trans. on Circuits and Systems for Video Technology 12(12), 114–221 (2002)

    Article  Google Scholar 

  13. Erkan, Y., Ziya, T.: SVD Adapted DCT Domain DC Subband Image Watermarking Against Watermark Ambiguity. In: MRCS’06, pp. 66–73 (2006)

    Google Scholar 

  14. Sun, R., Sun, H., Yao, T.: An SVD-and Quantization based Semi-fragile Watermarking for Image Authentication. In: Proceeding of the 6th International Conference on Signal Processing. Beijing, pp. 1592–1595 (2002)

    Google Scholar 

  15. Hsien, C., Wu, C., Po, Y., Tsai, S.Y.: A Semi-fragile Watermarking Scheme Based on SVD and VQ Techniques. In: Proceeding of ICCSA, pp. 406–415 (2006)

    Google Scholar 

  16. Su, K.J., Girod, B.: Power Spectrum Condition for Energy Efficient Watermarking. In: Proceeding of International Conference on Image Processing, pp. 301–305 (1999)

    Google Scholar 

  17. Zhang, X.P., Li, K.: Comments on An SVD-Based Watermarking Scheme for Protecting Rightful Ownership. IEEE Transactions on Multimedia: Correspondence, 7 (2005)

    Google Scholar 

  18. Kakarala, R., Ogunbona, P.: Signal Analysis using Multiresolution Form of the Singular Value Decomposition. IEEE Trans. on Image processing (2001)

    Google Scholar 

  19. Ppenheim, A.V., Lim, J.S.: Importance of Phase in Signals. Proc. of IEEE 69(5), 529–541 (1981)

    Article  Google Scholar 

  20. Ni, X.L., Huo, X.M.: Statistical Interpretation of the Importance of Phase Information in Signal and Image Reconstruction. Statistics & Probability Letters 77(4), 447–454 (2007)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

De-Shuang Huang Laurent Heutte Marco Loog

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Li, Yx., Zhang, Hb. (2007). Two Properties of SVD and Its Application in Data Hiding. In: Huang, DS., Heutte, L., Loog, M. (eds) Advanced Intelligent Computing Theories and Applications. With Aspects of Theoretical and Methodological Issues. ICIC 2007. Lecture Notes in Computer Science, vol 4681. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74171-8_67

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74171-8_67

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74170-1

  • Online ISBN: 978-3-540-74171-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics