[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

When Similar Problems Don’t Have Similar Solutions

  • Conference paper
Case-Based Reasoning Research and Development (ICCBR 2007)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4626))

Included in the following conference series:

Abstract

The performance of a Case-Based Reasoning system relies on the integrity of its case base but in real life applications the available data used to construct the case base invariably contains erroneous, noisy cases. Automated removal of these noisy cases can improve system accuracy. In addition, error rates for nearest neighbour classifiers can often be reduced by removing cases to give smoother decision boundaries between classes. In this paper we argue that the optimal level of boundary smoothing is domain dependent and, therefore, our approach to error reduction reacts to the characteristics of the domain to set an appropriate level of smoothing. We present a novel, yet transparent algorithm, Threshold Error Reduction, which identifies and removes noisy and boundary cases with the aid of a local complexity measure. Evaluation results confirm it to be superior to benchmark algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Blake, C., Keogh, E., Merz, C.: UCI repository of machine learning databases (1998)

    Google Scholar 

  2. Brighton, H., Mellish, C.: On the consistency of information filters for lazy learning algorithms. In: Principles of Data Mining and Knowledge Discovery: 3rd European Conf., pp. 283–288 (1999)

    Google Scholar 

  3. Brighton, H., Mellish, C.: Advances in instance selection for instance-based learning algorithms. Data Mining and Knowledge Discovery 6(2), 153–172 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Brodley, C.E., Friedl, M.A.: Identifying and eliminating mislabeled training instances. In: Proc. of the 13th National Conference on Artificial Intelligence, pp. 799–805 (1996)

    Google Scholar 

  5. Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Transactions on Information Theory 13(1), 21–27 (1967)

    Article  MATH  Google Scholar 

  6. Delany, S.J., Cunningham, P.: An analysis of case-base editing in a spam filtering system. In: Funk, P., González Calero, P.A. (eds.) ECCBR 2004. LNCS (LNAI), vol. 3155, pp. 128–141. Springer, Heidelberg (2004)

    Google Scholar 

  7. Lopez, R., et al.: Retrieval,reuse,revision and retention in case-based reasoning. The Knowledge Engineering Review 20(3), 215–240 (2006)

    Article  Google Scholar 

  8. Maletic, J., Marcus, A.: Data cleansing: beyond integrity analysis. In: Proc. of the Conf. on Information Quality, pp. 200–209 (2000)

    Google Scholar 

  9. Massie, S., Craw, S., Wiratunga, N.: Complexity profiling for informed case-base editing. In: Roth-Berghofer, T.R., Göker, M.H., Güvenir, H.A. (eds.) ECCBR 2006. LNCS (LNAI), vol. 4106, pp. 325–339. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  10. Massie, S., Craw, S., Wiratunga, N.: Complexity-guided case discovery for case based reasoning. In: Proc. of the 20th National Conference on Artificial Intelligence, pp. 216–221 (2005)

    Google Scholar 

  11. Orr, K.: Data Quality and System Theory. Commun. ACM 41(2), 66–71 (1998)

    Article  MathSciNet  Google Scholar 

  12. Roth-Berghofer, T.: Explanations and case-based reasoning: foundational issues. In: Funk, P., González Calero, P.A. (eds.) ECCBR 2004. LNCS (LNAI), vol. 3155, pp. 389–403. Springer, Heidelberg (2004)

    Google Scholar 

  13. Smyth, B., McKenna, E.: Building Compact Competent Case-Bases. In: Proc. of the 3rd International Conference on CBR, pp. 329–342 (1999)

    Google Scholar 

  14. Smyth, B., Keane, M.T.: Remembering to forget. In: Proc. of the 14th Int. Joint Conf. on Artificial Intelligence, pp. 377–382 (1995)

    Google Scholar 

  15. Smyth, B., McKenna, E.: Competence models and the maintenance problem. Computational Intelligence 17(2), 235–249 (2001)

    Article  Google Scholar 

  16. Tomek, I.: An experiment with the edited nearest-neighbour rule. IEEE Transactions on Systems, Man, and Cybernetics 6(6), 448–452 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  17. Wilson, D.L.: Asymptotic properties of nearest neighbour rules using edited data. IEEE Transactions on Systems, Man, and Cybernetics 2(3), 408–421 (1972)

    Article  MATH  Google Scholar 

  18. Wilson, D.R, Martinez, T.R.: Reduction techniques for instance-based learning algorithms. Machine Learning 38(3), 257–286 (2000)

    Article  MATH  Google Scholar 

  19. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations. Morgan Kaufmann, San Diego (2000)

    Google Scholar 

  20. Zhu, X., Wu, X.: Class noise vs attribute noise: a quantitative study of their impacts. Artificial Intelligence Review 22, 177–210 (2004)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Rosina O. Weber Michael M. Richter

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Massie, S., Craw, S., Wiratunga, N. (2007). When Similar Problems Don’t Have Similar Solutions. In: Weber, R.O., Richter, M.M. (eds) Case-Based Reasoning Research and Development. ICCBR 2007. Lecture Notes in Computer Science(), vol 4626. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74141-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74141-1_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74138-1

  • Online ISBN: 978-3-540-74141-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics