[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Abstract

In the framework of secure computation based on threshold homomorphic cryptosystems, we consider scenarios in which a lightweight client device provides encrypted input to a secure computation to be performed on the server side. The computational power at the server side is assumed to be much higher than on the client side. We show how to trade-off work for the client against work for the server such that the total amount of work increases moderately. These client-server trade-offs are considered in detail for two applications: private biometrics and electronic voting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 79.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 99.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 139.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. T. ElGamal. A public-key cryptosystem and a signature scheme based on discrete logarithms. IEEE Transactions on Information Theory, IT-31(4):469–472, 1985.

    Article  MathSciNet  Google Scholar 

  2. P. Paillier. Public-key cryptosystems based on composite degree residuosity classes. In Advances in Cryptology—EUROCRYPT’ 99, volume 1592 of Lecture Notes in Computer Science, pages 223–238, Berlin, 1999. Springer-Verlag.

    MathSciNet  Google Scholar 

  3. B. Schoenmakers and P. Tuyls. Practical two-party computation based on the conditional gate. In Advances in Cryptology—ASIACRYPT’ 04, volume 3329 of Lecture Notes in Computer Science, pages 119–136, Berlin, 2004. Springer-Verlag.

    MathSciNet  Google Scholar 

  4. I. Damgård and M. Jurik. A generalisation, a simplification and some applications of Paillier’s probabilistic public-key system. In Public Key Cryptography-PKC’ 01, volume 1992 of Lecture Notes in Computer Science, pages 119–136, Berlin, 2001. Springer-Verlag.

    Google Scholar 

  5. N. Gilboa. Two party RSA key generation. In Advances in Cryptology—CRYPTO’ 99, volume 1666 of Lecture Notes in Computer Science, pages 116–129, Berlin, 1999. Springer-Verlag.

    Article  MathSciNet  Google Scholar 

  6. J. Algesheimer, J. Camenisch, and V. Shoup. Efficient computation modulo a shared secret with application to the generation of shared safe-prime products. In Advances in Cryptology—CRYPTO’ 02, volume 2442 of Lecture Notes in Computer Science, pages 417–432, Berlin, 2002. Springer-Verlag.

    MathSciNet  Google Scholar 

  7. D. Boneh and M. Franklin. Efficient generation of shared RSA keys. Journal of the ACM, 48(4):702–722, 2001.

    Article  MathSciNet  Google Scholar 

  8. R. Rivest, L. Adleman, and M. Dertouzos. On data banks and privacy homomorphisms. In Foundations of Secure Computation, pages 169–177. Academic Press, 1978.

    Google Scholar 

  9. S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and System Sciences, 28(2):270–299, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  10. M. Franklin and S. Haber. Joint encryption and message-efficient secure computation. Journal of Cryptology, 9(4):217–232, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  11. A. Juels and M. Jakobsson. Mix and match: Secure function evaluation via ciphertexts. In Advances in Cryptology—ASIACRYPT’ 00, volume 1976 of Lecture Notes in Computer Science, pages 162–177, Berlin, 2000. Springer-Verlag.

    MathSciNet  Google Scholar 

  12. R. Cramer, I. Damgård, and J.B. Nielsen. Multiparty computation from threshold homomorphic encryption. In Advances in Cryptology—EUROCRYPT’ 01, volume 2045 of Lecture Notes in Computer Science, pages 280–300, Berlin, 2001. Springer-Verlag. Full version eprint.iacr.org/2000/055, October 27, 2000.

    Google Scholar 

  13. I. Damgård and J.B. Nielsen. Universally composable efficient multiparty computation from threshold homomorphic encryption. In Advances in Cryptology—CRYPTO’ 03, volume 2729 of Lecture Notes in Computer Science, pages 247–264, Berlin, 2003. Springer-Verlag.

    Google Scholar 

  14. O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game-or-a completeness theorem for protocols with honest majority. In Proc. 19th Symposium on Theory of Computing (STOC’ 87), pages 218–229, New York, 1987. A.C.M.

    Google Scholar 

  15. M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for noncryptographic fault-tolerant distributed computation. In Proc. 20th Symposium on Theory of Computing (STOC’ 88), pages 1–10, New York, 1988. A.C.M.

    Google Scholar 

  16. D. Chaum, C. Crépeau, and I. Damgård. Multiparty unconditionally secure protocols. In Proc. 20th Symposium on Theory of Computing (STOC’ 88), pages 11–19, New York, 1988. A.C.M.

    Google Scholar 

  17. B. Schoenmakers and P. Tuyls. Efficient binary conversion for Paillier encryptions. In Advances in Cryptology—EUROCRYPT’ 06, volume 4004 of Lecture Notes in Computer Science, pages 522–537, Berlin, 2006. Springer-Verlag.

    Google Scholar 

  18. R. Cramer, R. Gennaro, and B. Schoenmakers. A secure and optimally efficient multi-authority election scheme. In Advances in Cryptology—EUROCRYPT’ 97, volume 1233 of Lecture Notes in Computer Science, pages 103–118, Berlin, 1997. Springer-Verlag.

    MathSciNet  Google Scholar 

  19. J. Cohen and M. Fischer. A robust and verifiable cryptographically secure election scheme. In Proc. 26th IEEE Symposium on Foundations of Computer Science (FOCS’ 85), pages 372–382. IEEE Computer Society, 1985.

    Google Scholar 

  20. J. Benaloh and M. Yung. Distributing the power of a government to enhance the privacy of voters. In Proc. 5th ACM Symposium on Principles of Distributed Computing (PODC’ 86), pages 52–62, New York, 1986. A.C.M.

    Google Scholar 

  21. J. Benaloh. Secret sharing homomorphisms: Keeping shares of a secret secret. In Advances in Cryptology—CRYPTO’ 86, volume 263 of Lecture Notes in Computer Science, pages 251–260, Berlin, 1987. Springer-Verlag.

    Article  Google Scholar 

  22. J. Benaloh. Verifiable Secret-Ballot Elections. PhD thesis, Yale University, Department of Computer Science Department, New Haven, CT, September 1987.

    Google Scholar 

  23. I. Damgård and M. Jurik. Client/server tradeoffs for online elections. In Public Key Cryptography—PKC’ 02, volume 2274 of Lecture Notes in Computer Science, pages 125–140, Berlin, 2002. Springer-Verlag.

    Article  Google Scholar 

  24. H. Lipmaa. On diophantine complexity and statistical zero-knowledge arguments. In Advances in Cryptology—ASIACRYPT’ 03, volume 2894 of Lecture Notes in Computer Science, pages 398–415, Berlin, 2003. Springer-Verlag.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schoenmakers, B., Tuyls, P. (2007). Client-Server Trade-Offs in Secure Computation. In: Petković, M., Jonker, W. (eds) Security, Privacy, and Trust in Modern Data Management. Data-Centric Systems and Applications. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69861-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69861-6_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69860-9

  • Online ISBN: 978-3-540-69861-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics