[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Urban Data Visualization with Voronoi Diagrams

  • Conference paper
Computational Science and Its Applications – ICCSA 2008 (ICCSA 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5072))

Included in the following conference series:

  • 3370 Accesses

Abstract

Filtering and clustering of the data are very important aspects in data visualization. We will concentrate on these two topics and study how can we combine them to simulate a multiresolution scheme. We will focus on the properties of Voronoi Diagrams in order to avoid the need to compute any other time- or space-consuming data structure. Voronoi Diagrams capture deeply the notion of proximity between elements in an environment and allow queries to be efficiently performed. In this paper we present an application of Voronoi Diagrams and their use in visualization of georreferenced data. The input is a 2.5 data-set, and the output is a colored map where proximity to the given locations is used in order to compute the region contours. We have implemented the proposed techniques in C++. Examples of the results obtained with our application GeoVyS are given in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Andrienko, N., Andrienko, G.: Exploratory analysis of spatial and temporal data: a systematic approach. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  2. Arya, S., Malamatos, T., Mount, D.M.: Space-Efficient Approximate Voronoi diagrams. In: Proc. 34th ACM Symp. on Theory of Computing (STOC 2002), pp. 721–730 (2002)

    Google Scholar 

  3. Aurenhammer, F., Klein, R.: Voronoi Diagrams. In: Sack, J.R., Urrutia, G. (eds.) Handbook on Computational Geometry, Elsevier, Amsterdam (2000)

    Google Scholar 

  4. de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry: Algorithms and Applications, 3rd edn. Springer, Heidelberg (2008)

    MATH  Google Scholar 

  5. Chen, J.: A raster-based method for computing Voronoi diagrams of spatial objects using dynamic distance transformation. International Journal of Geographical Information Science 13(3), 209–225 (2001)

    Article  Google Scholar 

  6. Guibas, L.J., Knuth, D.E., Sharir, M.: Randomized incremental construction of Delaunay and Voronoi diagrams. In: Proceedings of the seventeenth international colloquium on Automata, languages and programming, pp. 414–431. Springer, New York (1990)

    Chapter  Google Scholar 

  7. Ledoux, H., Gold, C.M.: Modelling three-dimensional geoscientific fields with the Voronoi diagram and its dual. International Journal of Geographical Information Science 22(5), 547–574 (2008)

    Article  Google Scholar 

  8. Mu, L.: Polygon Characterization With the Multiplicatively Weighted Voronoi Diagram. The Professional Geographer 56(2), 223–239 (2004)

    Google Scholar 

  9. Mücke, E.P., Saias, I., Zhu, B.: Fast randomized point location without preprocessing in two- and three-dimensional Delaunay triangulations. In: Proc. 12th annu. ACM Sympos. Comput. Geom., pp. 274–283 (1996)

    Google Scholar 

  10. Okabe, A., Boots, B., Sugihara, K., Chiu, S.N.: Spatial Tessellations. Concepts and Applications of Voronoi Diagrams. John Wiley & Sons Ltd., Chichester (2000)

    MATH  Google Scholar 

  11. Okabe, A., Okunuki, K., Shiode, S.: The SANET Toolbox: New Methods for Network Spatial Analysis. Transactions in GIS 10(4), 535–550 (2006)

    Article  Google Scholar 

  12. Preparata, F., Shamos, M.I.: Computational Geometry: An Introduction, 2nd edn. Springer, Heidelberg (1988)

    Google Scholar 

  13. Sadahiro, Y., Tominaga, T.: Accuracy of quantized Voronoi diagrams. International Journal of Geographical Information Science 20(10), 1173–1189 (2006)

    Article  Google Scholar 

  14. Sibson, R.: A Brief Description of Natural Neighbor Interpolation. In: Chapter 2 in Interpolating multivariate data, pp. 21–36. John Wiley & Sons, New York (1981)

    Google Scholar 

  15. Juenger, B., Snoeyink, J.: Selecting Independent Vertices For Terrain Simplification. In: Proc. 6th Int. Conf. Computer Graphics & Visualization (1998)

    Google Scholar 

  16. Watson, D.: Contouring: A Guide to the Analysis and Display of Spatial Data. Pergamon Press, London (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Osvaldo Gervasi Beniamino Murgante Antonio Laganà David Taniar Youngsong Mun Marina L. Gavrilova

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Abellanas, M., Palop, B. (2008). Urban Data Visualization with Voronoi Diagrams. In: Gervasi, O., Murgante, B., Laganà, A., Taniar, D., Mun, Y., Gavrilova, M.L. (eds) Computational Science and Its Applications – ICCSA 2008. ICCSA 2008. Lecture Notes in Computer Science, vol 5072. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69839-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69839-5_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69838-8

  • Online ISBN: 978-3-540-69839-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics