[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Fast Exact Area Image Upsampling with Natural Biquadratic Histosplines

  • Conference paper
Image Analysis and Recognition (ICIAR 2008)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5112))

Included in the following conference series:

  • 1267 Accesses

Abstract

Interpreting pixel values as averages over abutting squares mimics the image capture process. Average Matching (AM) exact area resampling involves the construction of a surface with averages given by the pixel values; the surface is then averaged over new pixel areas. AM resampling approximately preserves local averages (error bounds are given). Also, original images are recovered by box filtering when the magnification factor is an integer in both directions. Natural biquadratic histosplines, which satisfy a minimal norm property like bicubic splines, are used to construct the AM surface. Recurrence relations associated with tridiagonal systems allow the computation of tensor B-Spline coefficients at modest cost and their storage in reduced precision with little accuracy loss. Pixel values are then obtained by multiplication by narrow band matrices computed from B-Spline antiderivatives. Tests involving the re-enlargement of images downsampled with box filtering suggest that natural biquadratic histopolation is the best linear upsampling reconstructor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Dodgson, N.A.: Image resampling. Technical Report UCAM–CL–TR–261, University of Cambridge Computer Laboratory, 15 JJ Thomson Avenue, Cambridge CB3 0FD, UK (1992)

    Google Scholar 

  2. Kuhnert, K.D.: Sensor modeling as basis of subpixel image processing. In: Duverney, J.F. (ed.) Proceedings SPIE Image Processing III, Paris France, vol. 1135, pp. 104–111 (1989)

    Google Scholar 

  3. Park, S.C., Park, M.K., Kang, M.G.: Super-resolution image reconstruction: a technical overview. Signal Processing Magazine, IEEE 20, 21–36 (2003)

    Article  Google Scholar 

  4. Price, J., Hayes, I.M.H.: Sensor optimal image interpolation. In: Conference Record of the Thirty-Third Asilomar Conference on Signals, Systems, and Computers, vol. 2, pp. 1262–1266 (1999)

    Google Scholar 

  5. Zukowski, J.: Java AWT reference. O’Reilly, Sebastopol (1997)

    Google Scholar 

  6. de Boor, C.: A practical guide to splines. Applied Mathematical Sciences, vol. 27. Springer, New York (1978)

    MATH  Google Scholar 

  7. Gentle, J.E.: Elements of Computational Statistics. In: Statistics and Computing, 1st edn., Springer, Heidelberg (2002)

    Google Scholar 

  8. Aràndiga, F., Donat, R., Mulet, P.: Adaptive interpolation of images. Signal Process 83, 459–464 (2003)

    Article  MATH  Google Scholar 

  9. Kobza, J., Mlčák, J.: Biquadratic spline smoothing mean values. Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math. 33, 339–356 (1994)

    Google Scholar 

  10. Tobler, W., Lau, J.: Interpolation of images via histosplines. CGIP 9, 77–81 (1979)

    Google Scholar 

  11. Unser, M.: Splines: a perfect fit for signal/image processing. IEEE Signal Process. Magazine 16(6), 22–38 (1999)

    Article  Google Scholar 

  12. Heckbert, P.: Filtering by repeated integration. Computer Graphics 20(4), 315–321 (1986)

    Article  Google Scholar 

  13. Anderson, N.: The L(D**(-1),U) decomposition. NA Digest 93(13) (1993)

    Google Scholar 

  14. Malcolm, M.A., Palmer, J.: A fast method for solving a class of tridiagonal linear systems. Commun. ACM 17(1), 14–17 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  15. Boisvert, R.F.: Algorithms for special tridiagonal systems. SIAM J. Sci. Stat. Comput. 12(2), 423–442 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hafner, J.L.: Explicit and asymptotic formulas for LDMT factorization of banded Toeplitz matrices. Linear Algebra Appl. 222, 97–126 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  17. Golub, G., Van Loan, C.: Matrix Computations, 2nd edn. The Johns Hopkins University Press, Baltimore (1989)

    MATH  Google Scholar 

  18. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: From error visibility to structural similarity. IEEE T. Image Proces. 13(4), 600–612 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Aurélio Campilho Mohamed Kamel

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Robidoux, N., Turcotte, A., Gong, M., Tousignant, A. (2008). Fast Exact Area Image Upsampling with Natural Biquadratic Histosplines. In: Campilho, A., Kamel, M. (eds) Image Analysis and Recognition. ICIAR 2008. Lecture Notes in Computer Science, vol 5112. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69812-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69812-8_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69811-1

  • Online ISBN: 978-3-540-69812-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics