Abstract
Interpreting pixel values as averages over abutting squares mimics the image capture process. Average Matching (AM) exact area resampling involves the construction of a surface with averages given by the pixel values; the surface is then averaged over new pixel areas. AM resampling approximately preserves local averages (error bounds are given). Also, original images are recovered by box filtering when the magnification factor is an integer in both directions. Natural biquadratic histosplines, which satisfy a minimal norm property like bicubic splines, are used to construct the AM surface. Recurrence relations associated with tridiagonal systems allow the computation of tensor B-Spline coefficients at modest cost and their storage in reduced precision with little accuracy loss. Pixel values are then obtained by multiplication by narrow band matrices computed from B-Spline antiderivatives. Tests involving the re-enlargement of images downsampled with box filtering suggest that natural biquadratic histopolation is the best linear upsampling reconstructor.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Dodgson, N.A.: Image resampling. Technical Report UCAM–CL–TR–261, University of Cambridge Computer Laboratory, 15 JJ Thomson Avenue, Cambridge CB3 0FD, UK (1992)
Kuhnert, K.D.: Sensor modeling as basis of subpixel image processing. In: Duverney, J.F. (ed.) Proceedings SPIE Image Processing III, Paris France, vol. 1135, pp. 104–111 (1989)
Park, S.C., Park, M.K., Kang, M.G.: Super-resolution image reconstruction: a technical overview. Signal Processing Magazine, IEEE 20, 21–36 (2003)
Price, J., Hayes, I.M.H.: Sensor optimal image interpolation. In: Conference Record of the Thirty-Third Asilomar Conference on Signals, Systems, and Computers, vol. 2, pp. 1262–1266 (1999)
Zukowski, J.: Java AWT reference. O’Reilly, Sebastopol (1997)
de Boor, C.: A practical guide to splines. Applied Mathematical Sciences, vol. 27. Springer, New York (1978)
Gentle, J.E.: Elements of Computational Statistics. In: Statistics and Computing, 1st edn., Springer, Heidelberg (2002)
Aràndiga, F., Donat, R., Mulet, P.: Adaptive interpolation of images. Signal Process 83, 459–464 (2003)
Kobza, J., Mlčák, J.: Biquadratic spline smoothing mean values. Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math. 33, 339–356 (1994)
Tobler, W., Lau, J.: Interpolation of images via histosplines. CGIP 9, 77–81 (1979)
Unser, M.: Splines: a perfect fit for signal/image processing. IEEE Signal Process. Magazine 16(6), 22–38 (1999)
Heckbert, P.: Filtering by repeated integration. Computer Graphics 20(4), 315–321 (1986)
Anderson, N.: The L(D**(-1),U) decomposition. NA Digest 93(13) (1993)
Malcolm, M.A., Palmer, J.: A fast method for solving a class of tridiagonal linear systems. Commun. ACM 17(1), 14–17 (1974)
Boisvert, R.F.: Algorithms for special tridiagonal systems. SIAM J. Sci. Stat. Comput. 12(2), 423–442 (1991)
Hafner, J.L.: Explicit and asymptotic formulas for LDMT factorization of banded Toeplitz matrices. Linear Algebra Appl. 222, 97–126 (1995)
Golub, G., Van Loan, C.: Matrix Computations, 2nd edn. The Johns Hopkins University Press, Baltimore (1989)
Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: From error visibility to structural similarity. IEEE T. Image Proces. 13(4), 600–612 (2004)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Robidoux, N., Turcotte, A., Gong, M., Tousignant, A. (2008). Fast Exact Area Image Upsampling with Natural Biquadratic Histosplines. In: Campilho, A., Kamel, M. (eds) Image Analysis and Recognition. ICIAR 2008. Lecture Notes in Computer Science, vol 5112. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69812-8_9
Download citation
DOI: https://doi.org/10.1007/978-3-540-69812-8_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-69811-1
Online ISBN: 978-3-540-69812-8
eBook Packages: Computer ScienceComputer Science (R0)