[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Comparison of Shannon, Renyi and Tsallis Entropy Used in Decision Trees

  • Conference paper
Artificial Intelligence and Soft Computing – ICAISC 2008 (ICAISC 2008)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5097))

Included in the following conference series:

Abstract

Shannon entropy used in standard top-down decision trees does not guarantee the best generalization. Split criteria based on generalized entropies offer different compromise between purity of nodes and overall information gain. Modified C4.5 decision trees based on Tsallis and Renyi entropies have been tested on several high-dimensional microarray datasets with interesting results. This approach may be used in any decision tree and information selection algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Duch, W., Setiono, R., Zurada, J.: Computational intelligence methods for understanding of data. Proceedings of the IEEE 92(5), 771–805 (2004)

    Article  Google Scholar 

  2. Duch, W., Grochowski, M.: Learning Highly Non-separable Boolean Functions Using Constructive Feedforward Neural Network. In: de Sá, J.M., Alexandre, L.A., Duch, W., Mandic, D. (eds.) ICANN 2007. LNCS, vol. 4668, pp. 180–189. Springer, Heidelberg (2007)

    Google Scholar 

  3. Quinlan, J.: C 4.5: Programs for machine learning. Morgan Kaufmann, San Mateo (1993)

    Google Scholar 

  4. Duch, W.: Filter methods. In: Guyon, I., Gunn, S., Nikravesh, M., Zadeh, L. (eds.) Feature extraction, foundations and applications, pp. 89–118. Physica Verlag, Springer, Heidelberg (2006)

    Google Scholar 

  5. Shannon, C., Weaver, W.: The Mathematical Theory of Communication. University of Illinois Press, Urbana (1964)

    Google Scholar 

  6. Tsallis, C., Mendes, R., Plastino, A.: The role of constraints within generalized nonextensive statistics. Physica 261A, 534–554 (1998)

    Google Scholar 

  7. Renyi, A.: Probability Theory. North-Holland, Amsterdam (1970)

    Google Scholar 

  8. Alon, U.: Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. PNAS 96, 745–750 (1999)

    Article  Google Scholar 

  9. Alizadeh, A.: Distinct types of diffuse large b-cell lymphoma identified by gene expression profiling. Nature 403, 503–511 (2000)

    Article  Google Scholar 

  10. Golub, T.: Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Science 286, 531–537 (1999)

    Article  Google Scholar 

  11. Duch, W.: Towards comprehensive foundations of computational intelligence. In: Duch, W., Mandziuk, J. (eds.) Challenges for Computational Intelligence, vol. 63, pp. 261–316. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  12. Hild, K., Erdogmus, D., Principe, J.: Blind source separation using renyi’s mutual information. IEEE Signal Processing Letters 8, 174–176 (2001)

    Article  Google Scholar 

  13. Erdogmus, D., Principe, J.: Generalized information potential criterion for adaptive system training. IEEE Trans. on Neural Networks 13, 1035–1044 (2002)

    Article  Google Scholar 

  14. Hild, K., Erdogmus, D., Torkkola, K., Principe, J.: Feature extraction using information-theoretic learning. IEEE Trans. on Pattern Analysis and Machine Intelligence 28, 1385–1392 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Leszek Rutkowski Ryszard Tadeusiewicz Lotfi A. Zadeh Jacek M. Zurada

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Maszczyk, T., Duch, W. (2008). Comparison of Shannon, Renyi and Tsallis Entropy Used in Decision Trees. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing – ICAISC 2008. ICAISC 2008. Lecture Notes in Computer Science(), vol 5097. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69731-2_62

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69731-2_62

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69572-1

  • Online ISBN: 978-3-540-69731-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics