Abstract
Shannon entropy used in standard top-down decision trees does not guarantee the best generalization. Split criteria based on generalized entropies offer different compromise between purity of nodes and overall information gain. Modified C4.5 decision trees based on Tsallis and Renyi entropies have been tested on several high-dimensional microarray datasets with interesting results. This approach may be used in any decision tree and information selection algorithm.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Duch, W., Setiono, R., Zurada, J.: Computational intelligence methods for understanding of data. Proceedings of the IEEE 92(5), 771–805 (2004)
Duch, W., Grochowski, M.: Learning Highly Non-separable Boolean Functions Using Constructive Feedforward Neural Network. In: de Sá, J.M., Alexandre, L.A., Duch, W., Mandic, D. (eds.) ICANN 2007. LNCS, vol. 4668, pp. 180–189. Springer, Heidelberg (2007)
Quinlan, J.: C 4.5: Programs for machine learning. Morgan Kaufmann, San Mateo (1993)
Duch, W.: Filter methods. In: Guyon, I., Gunn, S., Nikravesh, M., Zadeh, L. (eds.) Feature extraction, foundations and applications, pp. 89–118. Physica Verlag, Springer, Heidelberg (2006)
Shannon, C., Weaver, W.: The Mathematical Theory of Communication. University of Illinois Press, Urbana (1964)
Tsallis, C., Mendes, R., Plastino, A.: The role of constraints within generalized nonextensive statistics. Physica 261A, 534–554 (1998)
Renyi, A.: Probability Theory. North-Holland, Amsterdam (1970)
Alon, U.: Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. PNAS 96, 745–750 (1999)
Alizadeh, A.: Distinct types of diffuse large b-cell lymphoma identified by gene expression profiling. Nature 403, 503–511 (2000)
Golub, T.: Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Science 286, 531–537 (1999)
Duch, W.: Towards comprehensive foundations of computational intelligence. In: Duch, W., Mandziuk, J. (eds.) Challenges for Computational Intelligence, vol. 63, pp. 261–316. Springer, Heidelberg (2007)
Hild, K., Erdogmus, D., Principe, J.: Blind source separation using renyi’s mutual information. IEEE Signal Processing Letters 8, 174–176 (2001)
Erdogmus, D., Principe, J.: Generalized information potential criterion for adaptive system training. IEEE Trans. on Neural Networks 13, 1035–1044 (2002)
Hild, K., Erdogmus, D., Torkkola, K., Principe, J.: Feature extraction using information-theoretic learning. IEEE Trans. on Pattern Analysis and Machine Intelligence 28, 1385–1392 (2006)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Maszczyk, T., Duch, W. (2008). Comparison of Shannon, Renyi and Tsallis Entropy Used in Decision Trees. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing – ICAISC 2008. ICAISC 2008. Lecture Notes in Computer Science(), vol 5097. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69731-2_62
Download citation
DOI: https://doi.org/10.1007/978-3-540-69731-2_62
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-69572-1
Online ISBN: 978-3-540-69731-2
eBook Packages: Computer ScienceComputer Science (R0)