[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Towards Heterogeneous Similarity Function Learning for the k-Nearest Neighbors Classification

  • Conference paper
Artificial Intelligence and Soft Computing – ICAISC 2008 (ICAISC 2008)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5097))

Included in the following conference series:

Abstract

In order to classify an unseen (query) vector q with the k-Nearest Neighbors method (k-NN) one computes a similarity function between q and training vectors in a database. In the basic variant of the k-NN algorithm the predicted class of q is estimated by taking the majority class of the q’s k-nearest neighbors. Various similarity functions may be applied leading to different classification results. In this paper a heterogeneous similarity function is constructed out of different 1-component metrics by minimization of the number of classification errors the system makes on a training set. The HSFL-NN system, which has been introduced in this paper, on five tested datasets has given better results on unseen samples than the plain k-NN method with the optimally selected k parameter and the optimal homogeneous similarity function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Fix, E., Hodges Jr., J.L.: Discriminatory analysis, nonparametric discrimination consistency properties. Technical Report 4, Randolph Filed, TX: US Air Force, School of Aviation Medicine (1951)

    Google Scholar 

  2. Sebestyen, G.S.: Decision-making process in pattern-recognition. The Macmillan Company, New York (1962)

    Google Scholar 

  3. Cover, T., Hart, P.: Nearest Neighbor Pattern Classification. IEEE Transactions on Information Theory 13, 21–27 (1967)

    Article  MATH  Google Scholar 

  4. Cover, T.: Estimation by the nearest neighbor rule. IEEE Transactions on Information Theory 14, 50–55 (1968)

    Article  MATH  Google Scholar 

  5. Duda, R., Hart, P.: Pattern Classification and Scene Analysis. John Wiley & Sons, Chichester (1973)

    MATH  Google Scholar 

  6. Aha, D.W., Kibler, D., Albert, M.K.: Instance-based learning algorithms. Machine Learning 6, 37–66 (1991)

    Google Scholar 

  7. Dasarathy, B.V.: Nearest Neighbor (NN) Norms: NN Pattern Classification Techniques. IEEE Computer Society Press, Los Alamitos (1991)

    Google Scholar 

  8. Cost, S., Salzberg, S.: A weighted nearest neighbor algorithm for learning with symbolic features. Machine Learning 10, 57–78 (1993)

    Google Scholar 

  9. Duch, W.: Similarity Based Methods: a general framework for classification, approximation and association. Control and Cybernetics 29(4), 1–30 (2000)

    MathSciNet  Google Scholar 

  10. Grudzinski, K.: Similarity Based Methods in Application to Analysis of Scientific and Medical Data, PhD Thesis, Department of Applied Informatics, Nicholaus Copernicus University, Torun, Poland (2002)

    Google Scholar 

  11. Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and techniques, 2nd edn. Morgan Kaufmann, San Francisco (2005)

    MATH  Google Scholar 

  12. Mierswa, I., Wurst, M., Klinkenberg, R., Scholz, M., Euler, T.: YALE: Rapid Prototyping for Complex Data Mining Tasks. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2006) (2006)

    Google Scholar 

  13. Knime: Konstanz Information Miner, http://www.knime.org/index.html

  14. SBL, Similarity Based Learner, Software Developed by Karol Grudzinski, Nicholaus Copernicus University: 1997-2002, Kazimierz Wielki University: 2002-2008, University of Economy: 2005-2008s

    Google Scholar 

  15. Stahl, A.: Learning of Knowledge-Intensive Similarity Measures in Case-Based Reasoning. PhD thesis, University of Kaiserslautern, Germany

    Google Scholar 

  16. Mertz, C.J., Murphy, P.M.: UCI repository of machine learning databases, http://www.ics.uci.edu/pub/machine-learning-data-bases

  17. Weiss, S.M., Kulikowski, C.A.: Computer Systems that Learn. Morgan Kaufmann, San Francisco (1991)

    Google Scholar 

  18. Duch, W., Grabczewski, K., Adamczak, R., Grudzinski, K., Hippe, Z.S.: Rules for melanoma skin cancer diagnosis. Komputerowe Systemy Rozpoznawania, KOSYR, Wrocaw 2001, pp. 59–68 (2001)

    Google Scholar 

  19. Hab, Sklodowski, H., Zarzadzania, W.: Spoleczna Wyzsza Szkola Przedsiebiorczosci i Zarzadzania w Lodzi

    Google Scholar 

  20. Nelder, J.A., Mead, R.: A simplex method for function minimization. Computer Journal 7, 308–313 (1965)

    Google Scholar 

  21. Ingber, L.: Adaptive simulated annealing (ASA): Lessons learned. Control and Cybernetics 25(1), 33–54 (1996)

    MATH  Google Scholar 

  22. Ortega, J., Koppel, M., Argamon, S.: Arbitrating Among Competing Classifiers Using Learned Referees. Knowledge and Information Systems 3, 470–490 (2001)

    Article  MATH  Google Scholar 

  23. Bauer, E., Kohavi, R.: An empirical comparison of voting classification algorithms: bagging, boosting and variants. Machine Learning 36, 105–142 (1999)

    Article  Google Scholar 

  24. Duch, W., Grudziński, K.: Meta-Learning: searching in the model space. In: Proceedings of the International Conference on Neural Information Processing, Shanghai, vol. I, pp. 235–240 (2001)

    Google Scholar 

  25. Duch, W., Grudziński, K.: Meta-learning via search combined with parameter optimization. In: Intelligent Information Systems, Sopot, Poland, 2002, Advances in Soft Computing, pp. 13–22. Physica-Verlag (Springer) (2002)

    Google Scholar 

  26. Grudziński, K.: SBL-PM-M: A System for Partial Memory Learning. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 586–591. Springer, Heidelberg (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Leszek Rutkowski Ryszard Tadeusiewicz Lotfi A. Zadeh Jacek M. Zurada

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Grudziński, K. (2008). Towards Heterogeneous Similarity Function Learning for the k-Nearest Neighbors Classification. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing – ICAISC 2008. ICAISC 2008. Lecture Notes in Computer Science(), vol 5097. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69731-2_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69731-2_56

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69572-1

  • Online ISBN: 978-3-540-69731-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics