[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Improving the Efficiency of Counting Defects by Learning RBF Nets with MAD Loss

  • Conference paper
Artificial Intelligence and Soft Computing – ICAISC 2008 (ICAISC 2008)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5097))

Included in the following conference series:

  • 1645 Accesses

Abstract

The method of using a lateral histogram for evaluating the number of holes (e.g., defects) from images is known to be fast but rather inaccurate. Our aim is to propose a method of improving its performance by learning, but keeping the speed of the original method. This task is accomplished by considering a multiclass pattern recognition problem with linearly ordered labels and a loss function, which measures absolute deviations of decisions from true classes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bishop, C.: Neural Networks for Pattern Recognition. Oxford University Press, Oxford (1995)

    Google Scholar 

  2. Davies, E.R.: Lateral histograms for efficient object location: speed versus ambiguity. Pattern Recogn. Lett. 6, 189–198 (1987)

    Article  Google Scholar 

  3. Davies, E.R.: Machine Vision: Theory, Algorithms, Practicalities, 3rd edn. Morgan Kaufmann, San Francisco (2005)

    Google Scholar 

  4. Devroye, L., Györfi, L.: Nonparametric Density Estimation. The L 1 View. Wiley, New York (1985)

    MATH  Google Scholar 

  5. Devroye, L., Györfi, L., Lugosi, G.: Probabilistic Theory of Pattern Recognition. Springer, New York (1996)

    MATH  Google Scholar 

  6. Karayiannis, N.B., Randolph-Gips, M.M.: On the Construction and Training of Reformulated Radial Basis Function Neural Networks. IEEE Trans. on Neural Networks 14, 835–846 (2003)

    Article  Google Scholar 

  7. Krzyżak, A., Skubalska-Rafajłowicz, E.: Combining Space-Filling Curves and Radial Basis Function Networks. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 229–234. Springer, Heidelberg (2004)

    Google Scholar 

  8. Rafajłowicz, E., Skubalska-Rafajłowicz, E.: MAD loss in pattern recognition and RBF learning. In: ICAISC 2008 (to appear, 2008)

    Google Scholar 

  9. Rafajłowicz, E., Pawla, M., Steland, A.: Nonlinear Image Filtering and Reconstruction: A Unified Approach Based on Vertically Weighted Regression. Int. J. Apll. Math. Comp. Sci (to appear, 2008)

    Google Scholar 

  10. Skubalska-Rafajłowicz, E.: Pattern Recognition Algorithms Based on Space-Filling Curves and Orthogonal Expansions. IEEE Trans. Information Theory 47, 1915–1927 (2001)

    Article  Google Scholar 

  11. Skubalska-Rafajłowicz, E., Krzyżak, A.: Fast k-NN Classification Rule Using Metric on Space-Filling Curves. In: Proceedings of the 13th International Conference on Pattern Recognition, Vienna, vol. 2, pp. 121–125 (1996)

    Google Scholar 

  12. Skubalska-Rafajłowicz, E.: Data Compression for Pattern Recognition Based on Space-Filling Curve Pseudo-Inverse Mapping. Nonlinear Analysis, Theory, Methods and Applications 47, 315–326

    Google Scholar 

  13. Skubalska-Rafajłowicz, E.: RBF Neural Network for Probability Density Function Estimation and Detecting Changes in Multivariate Processes. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.) ICAISC 2006. LNCS (LNAI), vol. 4029, pp. 133–141. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  14. Skubalska-Rafajłowicz, E.: Local correlation and entropy maps as tools for detecting defects in industrial images. Int. J. Apll. Math. Comp. Sci (to appear, 2008)

    Google Scholar 

  15. Xu, L., Krzyżak, A., Yuille, A.: On Radial Basis Function Nets and Kernel Regression: Statistical Consistency, Convergence Rates and Receptive Field Size. Neural Networks 4, 609–628 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Leszek Rutkowski Ryszard Tadeusiewicz Lotfi A. Zadeh Jacek M. Zurada

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rafajłowicz, E. (2008). Improving the Efficiency of Counting Defects by Learning RBF Nets with MAD Loss. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing – ICAISC 2008. ICAISC 2008. Lecture Notes in Computer Science(), vol 5097. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69731-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69731-2_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69572-1

  • Online ISBN: 978-3-540-69731-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics