Abstract
The method of using a lateral histogram for evaluating the number of holes (e.g., defects) from images is known to be fast but rather inaccurate. Our aim is to propose a method of improving its performance by learning, but keeping the speed of the original method. This task is accomplished by considering a multiclass pattern recognition problem with linearly ordered labels and a loss function, which measures absolute deviations of decisions from true classes.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bishop, C.: Neural Networks for Pattern Recognition. Oxford University Press, Oxford (1995)
Davies, E.R.: Lateral histograms for efficient object location: speed versus ambiguity. Pattern Recogn. Lett. 6, 189–198 (1987)
Davies, E.R.: Machine Vision: Theory, Algorithms, Practicalities, 3rd edn. Morgan Kaufmann, San Francisco (2005)
Devroye, L., Györfi, L.: Nonparametric Density Estimation. The L 1 View. Wiley, New York (1985)
Devroye, L., Györfi, L., Lugosi, G.: Probabilistic Theory of Pattern Recognition. Springer, New York (1996)
Karayiannis, N.B., Randolph-Gips, M.M.: On the Construction and Training of Reformulated Radial Basis Function Neural Networks. IEEE Trans. on Neural Networks 14, 835–846 (2003)
Krzyżak, A., Skubalska-Rafajłowicz, E.: Combining Space-Filling Curves and Radial Basis Function Networks. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 229–234. Springer, Heidelberg (2004)
Rafajłowicz, E., Skubalska-Rafajłowicz, E.: MAD loss in pattern recognition and RBF learning. In: ICAISC 2008 (to appear, 2008)
Rafajłowicz, E., Pawla, M., Steland, A.: Nonlinear Image Filtering and Reconstruction: A Unified Approach Based on Vertically Weighted Regression. Int. J. Apll. Math. Comp. Sci (to appear, 2008)
Skubalska-Rafajłowicz, E.: Pattern Recognition Algorithms Based on Space-Filling Curves and Orthogonal Expansions. IEEE Trans. Information Theory 47, 1915–1927 (2001)
Skubalska-Rafajłowicz, E., Krzyżak, A.: Fast k-NN Classification Rule Using Metric on Space-Filling Curves. In: Proceedings of the 13th International Conference on Pattern Recognition, Vienna, vol. 2, pp. 121–125 (1996)
Skubalska-Rafajłowicz, E.: Data Compression for Pattern Recognition Based on Space-Filling Curve Pseudo-Inverse Mapping. Nonlinear Analysis, Theory, Methods and Applications 47, 315–326
Skubalska-Rafajłowicz, E.: RBF Neural Network for Probability Density Function Estimation and Detecting Changes in Multivariate Processes. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.) ICAISC 2006. LNCS (LNAI), vol. 4029, pp. 133–141. Springer, Heidelberg (2006)
Skubalska-Rafajłowicz, E.: Local correlation and entropy maps as tools for detecting defects in industrial images. Int. J. Apll. Math. Comp. Sci (to appear, 2008)
Xu, L., Krzyżak, A., Yuille, A.: On Radial Basis Function Nets and Kernel Regression: Statistical Consistency, Convergence Rates and Receptive Field Size. Neural Networks 4, 609–628 (1994)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Rafajłowicz, E. (2008). Improving the Efficiency of Counting Defects by Learning RBF Nets with MAD Loss. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing – ICAISC 2008. ICAISC 2008. Lecture Notes in Computer Science(), vol 5097. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69731-2_15
Download citation
DOI: https://doi.org/10.1007/978-3-540-69731-2_15
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-69572-1
Online ISBN: 978-3-540-69731-2
eBook Packages: Computer ScienceComputer Science (R0)