Abstract
We apply normalized RBF networks to the problem of learning nonlinear regression functions. The parameters of the networks are learned by empirical risk minimization and complexity regularization. We study convergence of the RBF networks for various radial kernels as the number of training samples increases. The rates of convergence are also examined.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Anthony, M., Bartlett, P.L.: Neural Network Learning: Theoretical Foundations. Cambridge University Press, Cambridge (1999)
Barron, A.R.: Universal approximation bounds for superpositions of a sigmoidal function. IEEE Trans. on Information Theory 39, 930–945 (1993)
Barron, A.R.: Approximation and estimation bounds for artificial neural networks. Machine Learning 14, 115–133 (1994)
Cybenko, G.: Approximations by superpositions of sigmoidal functions. Mathematics of Control, Signals, and Systems 2, 303–314 (1989)
Devroye, L., Györfi, L., Lugosi, G.: Probabilistic Theory of Pattern Recognition. Springer, New York (1996)
Duchon, J.: Sur l’erreur d’interpolation des fonctions de plusieurs variables par les Dm-splines. RAIRO Anal. Numér. 12(4), 325–334 (1978)
Faragó, A., Lugosi, G.: Strong universal consistency of neural network classifiers. IEEE Trans. on Information Theory 39, 1146–1151 (1993)
Girosi, F.: Regularization theory, radial basis functions and networks. In: Cherkassky, V., Friedman, J.H., Wechsler, H. (eds.) From Statistics to Neural Networks. Theory and Pattern recognition Applications, pp. 166–187. Springer, Berlin (1992)
Girosi, F., Anzellotti, G.: Rates of convergence for radial basis functions and neural networks. In: Mammone, R.J. (ed.) Artificial Neural Networks for Speech and Vision, pp. 97–113. Chapman and Hall, London (1993)
Girosi, F., Jones, M., Poggio, T.: Regularization theory and neural network architectures. Neural Computation 7, 219–267 (1995)
Grenander, U.: Abstract Inference. Wiley, New York (1981)
Györfi, L., Kohler, M., Krzyżak, A., Walk, H.: A DistributionFree Theory of Nonparametric Regression. Springer, New York (2002)
Haussler, D.: Decision theoretic generalizations of the PAC model for neural net and other learning applications. Information and Computation 100, 78–150 (1992)
Hornik, K., Stinchocombe, S., White, H.: Multilayer feed-forward networks are universal approximators. Neural Networks 2, 359–366 (1989)
Kolmogorov, A.N., Tihomirov, V.M.: ε-entropy and ε-capacity of sets in function spaces. Translations of the American Mathematical Society 17, 277–364 (1961)
Krzyżak, A., Linder, T., Lugosi, G.: Nonparametric estimation and classification using radial basis function nets and empirical risk minimization. IEEE Trans. Neural Networks 7(2), 475–487 (1996)
Krzyżak, A., Linder, T.: Radial basis function networks and complexity regularization in function learning. IEEE Trans. Neural Networks 9(2), 247–256 (1998)
Krzyżak, A., Niemann, H.: Convergence and rates of convergence of radial basis functions networks in function learning. Nonlinear Analysis 47, 281–292 (2001)
Krzyżak, A., Schäfer, D.: Nonparametric regression estimation by normalized radial basis function networks. IEEE Transactions on Information Theory 51(3), 1003–1010 (2005)
Lugosi, G., Zeger, K.: Nonparametric estimation via empirical risk minimization. IEEE Trans. on Information Theory 41, 677–687 (1995)
Moody, J., Darken, J.: Fast learning in networks of locally-tuned processing units. Neural Computation 1, 281–294 (1989)
Park, J., Sandberg, I.W.: Universal approximation using Radial-Basis-Function networks. Neural Computation 3, 246–257 (1991)
Park, J., Sandberg, I.W.: Approximation and Radial-Basis-Function networks. Neural Computation 5, 305–316 (1993)
Pollard, D.: Convergence of Stochastic Processes. Springer, New York (1984)
Rissanen, J.: A universal prior for integers and estimation by minimum description length. Annals of Statistics 11, 416–431 (1983)
Ripley, B.D.: Pattern Recognition and Neural Networks. Cambridge University Press, Cambridge (1996)
Shorten, R., Murray-Smith, R.: Side effects of normalising radial basis function networks. International Journal of Neural Systems 7, 167–179 (1996)
Specht, D.F.: Probabilistic neural networks. Neural Networks 3, 109–118 (1990)
Vapnik, V.N.: Estimation of Dependences Based on Empirical Data, 2nd edn. Springer, New York (1999)
Xu, L., Krzyżak, A., Yuille, A.L.: On radial basis function nets and kernel regression: approximation ability, convergence rate and receptive field size. Neural Networks 7, 609–628 (1994)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Krzyżak, A., Schäfer, D. (2008). Nonlinear Function Learning Using Radial Basis Function Networks: Convergence and Rates. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing – ICAISC 2008. ICAISC 2008. Lecture Notes in Computer Science(), vol 5097. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69731-2_11
Download citation
DOI: https://doi.org/10.1007/978-3-540-69731-2_11
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-69572-1
Online ISBN: 978-3-540-69731-2
eBook Packages: Computer ScienceComputer Science (R0)