[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Invariant Synthesis for Combined Theories

  • Conference paper
Verification, Model Checking, and Abstract Interpretation (VMCAI 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4349))

Abstract

We present a constraint-based algorithm for the synthesis of invariants expressed in the combined theory of linear arithmetic and uninterpreted function symbols. Given a set of programmer-specified invariant templates, our algorithm reduces the invariant synthesis problem to a sequence of arithmetic constraint satisfaction queries. Since the combination of linear arithmetic and uninterpreted functions is a widely applied predicate domain for program verification, our algorithm provides a powerful tool to statically and automatically reason about program correctness. The algorithm can also be used for the synthesis of invariants over arrays and set data structures, because satisfiability questions for the theories of sets and arrays can be reduced to the theory of linear arithmetic with uninterpreted functions. We have implemented our algorithm and used it to find invariants for a low-level memory allocator written in C.

This research was sponsored in part by the grants NSF-CCF-0427202 and NSF-CCF-0546170.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ball, T., Rajamani, S.K.: The Slam project: Debugging system software via static analysis. In: Proc. POPL, pp. 1–3. ACM, New York (2002)

    Google Scholar 

  2. Bradley, A.R., Manna, Z., Sipma, H.B.: What’s decidable about arrays? In: Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 427–442. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  3. Chang, C.C., Keisler, H.J.: Model Theory, 3rd edn. North-Holland, Amsterdam (1990)

    MATH  Google Scholar 

  4. Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic decomposition. In: Automata Theory and Formal Languages, pp. 134–183. Springer, New York (1975)

    Google Scholar 

  5. Colón, M., Sankaranarayanan, S., Sipma, H.B.: Linear invariant generation using non-linear constraint solving. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 420–432. Springer, Heidelberg (2003)

    Google Scholar 

  6. Cousot, P.: Proving program invariance and termination by parametric abstraction, Lagrangian relaxation and semidefinite programming. In: Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, Springer, Heidelberg (2005)

    Google Scholar 

  7. Cousot, P., Cousot, R.: Comparing the Galois connection and widening/narrowing approaches to abstract interpretation. In: Bruynooghe, M., Wirsing, M. (eds.) PLILP 1992. LNCS, vol. 631, pp. 269–295. Springer, Heidelberg (1992)

    Chapter  Google Scholar 

  8. Flanagan, C., et al.: Extended static checking for Java. In: Proc. PLDI, pp. 234–245. ACM, New York (2002)

    Google Scholar 

  9. Floyd, R.W.: Assigning meanings to programs. In: Mathematical Aspects of Computer Science, pp. 19–32. AMS (1967)

    Google Scholar 

  10. Gulwani, S., Tiwari, A.: Combining abstract interpreters. In: Proc. PLDI, pp. 376–386. ACM, New York (2006)

    Google Scholar 

  11. Henzinger, T.A., et al.: Lazy abstraction. In: Proc. POPL, pp. 58–70. ACM, New York (2002)

    Google Scholar 

  12. Holzbaur, C.: OFAI clp(q,r) Manual, Edition 1.3.3. Austrian Research Institute for Artificial Intelligence, Vienna. TR-95-09 (1995)

    Google Scholar 

  13. Kapur, D.: Automatically generating loop invariants using quantifier elimination. In: Proc. Deduction and Applications, vol. 05431. IBFI Schloss Dagstuhl (2006)

    Google Scholar 

  14. Kapur, D., Zarba, C.: A reduction approach to decision procedures. Technical Report TR-CS-2005-44, University of New Mexico (2005)

    Google Scholar 

  15. Laboratory, T.I.S.: SICStus Prolog User’s Manual. Swedish Institute of Computer Science, PO Box 1263 SE-164 29 Kista, Sweden. Release 3.8.7 (October 2001)

    Google Scholar 

  16. Manna, Z., Pnueli, A.: Temporal verification of reactive systems: Safety. Springer, Heidelberg (1995)

    Google Scholar 

  17. McCarthy, J.: Towards a mathematical science of computation. In: Proc. IFIP Congress, pp. 21–28. North-Holland, Amsterdam (1962)

    Google Scholar 

  18. Nelson, G.: Techniques for program verification. Technical Report CSL81-10, Xerox Palo Alto Research Center (1981)

    Google Scholar 

  19. Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Constraint-based linear-relations analysis. In: Giacobazzi, R. (ed.) SAS 2004. LNCS, vol. 3148, pp. 53–68. Springer, Heidelberg (2004)

    Google Scholar 

  20. Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Non-linear loop invariant generation using Gröbner bases. In: Proc. POPL, pp. 318–329. ACM, New York (2004)

    Google Scholar 

  21. Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Scalable analysis of linear systems using mathematical programming. In: Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp. 25–41. Springer, Heidelberg (2005)

    Google Scholar 

  22. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, Chichester (1986)

    MATH  Google Scholar 

  23. Sofronie-Stokkermans, V.: Hierarchic reasoning in local theory extensions. In: Nieuwenhuis, R. (ed.) Automated Deduction – CADE-20. LNCS (LNAI), vol. 3632, pp. 219–234. Springer, Heidelberg (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Byron Cook Andreas Podelski

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Beyer, D., Henzinger, T.A., Majumdar, R., Rybalchenko, A. (2007). Invariant Synthesis for Combined Theories. In: Cook, B., Podelski, A. (eds) Verification, Model Checking, and Abstract Interpretation. VMCAI 2007. Lecture Notes in Computer Science, vol 4349. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69738-1_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69738-1_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69735-0

  • Online ISBN: 978-3-540-69738-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics