[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Fast Point Multiplication on Elliptic Curves without Precomputation

  • Conference paper
Arithmetic of Finite Fields (WAIFI 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5130))

Included in the following conference series:

Abstract

Elliptic curves find numerous applications. This paper describes a simple strategy to speed up their arithmetic in right-to-left methods. In certain settings, this leads to a non-negligible performance increase compared to the left-to-right counterparts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bernstein, D.J., Lange, T.: Explicit-formulas database, http://www.hyperelliptic.org/EFD/jacobian.html

  2. Bernstein, D.J., Lange, T.: Fast scalar multiplication on elliptic curves. In: Mullen, G., Panario, D., Shparlinski, I. (eds.) 8th International Conference on Finite Fields and Applications, Contemporary Mathematics. American Mathematical Society (to appear)

    Google Scholar 

  3. Chevallier-Mames, B., Ciet, M., Joye, M.: Low-cost solutions for preventing simple side-channel analysis: Side-channel atomicity. IEEE Transactions on Computers 53(6), 760–768 (2004)

    Article  Google Scholar 

  4. Chudnovsky, D.V., Chudnovsky, G.V.: Sequences of numbers generated by addition in formal groups and new primality and factorization tests. Advances in Applied Mathematics 7(4), 385–434 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  5. Cohen, H.: A Course in Computational Algebraic Number Theory. Graduate Texts in Mathematics, vol. 138. Springer, Heidelberg (1993)

    MATH  Google Scholar 

  6. Cohen, H., Miyaji, A., Ono, T.: Efficient elliptic curve exponentiation using mixed coordinates. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 51–65. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  7. Fouque, P.-A., Valette, F.: The doubling attack - Why upwards is better than downwards. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 269–280. Springer, Heidelberg (2003)

    Google Scholar 

  8. Gordon, D.M.: A survey of fast exponentiation methods. Journal of Algorithms 27(1), 129–146 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  9. IEEE 1363-2000. Standard specifications for public key cryptography. IEEE Standards (August 2000)

    Google Scholar 

  10. Knuth, D.E.: The Art of Computer Programming, 2nd edn. Addison-Welsey (1981)

    Google Scholar 

  11. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

    Google Scholar 

  12. López, J., Dahab, R.: Fast multiplication on elliptic curves over GF(2m) without precomputation. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 316–327. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  13. Montgomery, P.L.: Speeding the Pollard and elliptic curve methods of factorization. Mathematics of Computation 48(177), 243–264 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  14. Morain, F., Olivos, J.: Speeding up the computations on an elliptic curve using addition-subtraction chains. RAIRO Theoretical Informatics and Applications 24(6), 531–543 (1990)

    MATH  MathSciNet  Google Scholar 

  15. Reitwiesner, G.W.: Binary arithmetic. Advances in Computers 1, 231–308 (1960)

    MathSciNet  Google Scholar 

  16. Silverman, J.H.: The Arithmetic of Elliptic Curves. Graduate Texts in Mathematics, vol. 106. Springer, Heidelberg (1986)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Joachim von zur Gathen José Luis Imaña Çetin Kaya Koç

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Joye, M. (2008). Fast Point Multiplication on Elliptic Curves without Precomputation. In: von zur Gathen, J., Imaña, J.L., Koç, Ç.K. (eds) Arithmetic of Finite Fields. WAIFI 2008. Lecture Notes in Computer Science, vol 5130. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69499-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69499-1_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69498-4

  • Online ISBN: 978-3-540-69499-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics