[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Recognition of SAR Occluded Targets Using SVM

  • Conference paper
Advances in Multimedia Modeling (MMM 2007)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4352))

Included in the following conference series:

  • 904 Accesses

Abstract

A novel method for automatic occluded targets recognition in SAR images is proposed in this paper. Different SAR occluded targets are simulated based on actual vehicles from the MSTAR database, and are recognized using SVM classifier by grouping recognition based on the targets azimuth angles. It is shown that the proposed method outperforms the typical methods in accuracy at high occlusion, and robustness to occlusion with experiments considering accuracy and confusion matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Jones III, G., Bhanu, B.: Recognition of articulated and occluded objects. IEEE Transactions on Pattern Analysis and Machine Intelligence 21(7), 603–613 (1999)

    Article  Google Scholar 

  2. Jones III, G., Bhanu, B.: Recognizing occluded objects in SAR images. IEEE Transactions on Aerospace and Electronic Systems 37(1), 316–328 (2001)

    Article  Google Scholar 

  3. Bhanu, B., Jones III, G.: Target recognition for articulated and occluded objects in synthetic aperture radar imagery. In: Radar Conference, May 11-14, pp. 245–250 (1998)

    Google Scholar 

  4. Bhanu, B., Jones III, G.: Object recognition results using MSTAR synthetic aperture radar data. In: Proceedings, IEEE Workshop on Computer Vision beyond the Visible Spectrum: Methods and Applications, June 16, pp. 55–62 (2000)

    Google Scholar 

  5. Yang, Y.N., Qiu, Y.X., Lu, C.: Automatic Target Classification — Experiments on the MSTAR SAR Images. In: SNPD/SAWN 2005, pp. 2–7 (2005)

    Google Scholar 

  6. Zhao, Q., Principe, J.C.: Support vector machines for SAR automatic target recognition. IEEE Transactions on Aerospace and Electronic Systems 37(2), 643–654 (2001)

    Article  Google Scholar 

  7. Eric, K., Shung, R., Lee, W., Moore, T.: MSTAR Extended Operating Conditions, A Tutorial. In: SPIE, vol. 2757, pp. 228–242 (1996)

    Google Scholar 

  8. Ross, T.D., Worrell, S.W., et al.: Standard SAR ATR evaluation experiments using the MSTAR public release data set. In: SPIE Proceedings: Algorithms for Synthetic Aperture Radar Imagery V, vol. 3370, pp. 566–573 (1998)

    Google Scholar 

  9. Zhang, C.: Research on Automatic Target Recognition in High Resolution SAR Images. Ph.D Thesis, National University of Defense Technology (October 2003) (in Chinese)

    Google Scholar 

  10. Han, P.: SAR Automatic Target Recognition and Related Techniques. Ph.D Thesis, Tianjin University (January 2004) (in Chinese)

    Google Scholar 

  11. Bian, Z.Q., Zhang, X.G.: Pattern Recognition, 2nd edn. Tsinghua University Press (2000) (in Chinese)

    Google Scholar 

  12. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. John Wiley & Sons, Inc., Chichester (2001) (in Chinese)

    MATH  Google Scholar 

  13. Gao, G., Ji, K.F., Kuang, G.Y., Li, D.R.: Targets Peak Feature Extraction From High-Resolution SAR Image. Signal Processing 25(1), 232–235 (2005) (in Chinese)

    Google Scholar 

  14. Guo, G.R., et al.: Electromagnetic Feature Extraction and Target Recognition. National University of Defense Technology Press (1996) (in Chinese)

    Google Scholar 

  15. Kuang, G.Y., Ji, K.F., Su, Y., Yu, W.X.: A Survey of Researches on SAR ATR. Journal of Image and Graphics 8A(10), 115–120 (2003) (in Chinese)

    Google Scholar 

  16. Bhanu, B., Dudgeon, D., Zelnio, E., Rosenfeld, A., Casasent, D., Reed, I.: Introduction to the Special Issue on Automatic Target Detection and Recognition. IEEE Trans. Image Processing 6(1), 1–6 (1997)

    Article  Google Scholar 

  17. Dudgeon, D., Lacoss, R.: An overview of automatic target recognition. The Lincoln Laboratory Journal 6(1), 3–9 (1993)

    Google Scholar 

  18. Yi, J.H., Bhanu, B., Li, M.: Target Indexing in SAR Images Using Scattering Centers and the Hausdorff Distance. Pattern Recognition Letters 17, 1,191–1,198 (1996)

    Google Scholar 

  19. Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, New York (1995)

    MATH  Google Scholar 

  20. Platt, J.: Fast training of support vector machines using sequential minimal optimization. In: Schlkopf, B., Burges, C.J.C., Smola, A.J. (eds.) Advances in Kernel Methods-Support Vector Learning, pp. 185–208. MIT Press, Cambridge (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gao, Y., Hu, R., Jiao, L., Zhou, W., Zhang, X. (2006). Recognition of SAR Occluded Targets Using SVM. In: Cham, TJ., Cai, J., Dorai, C., Rajan, D., Chua, TS., Chia, LT. (eds) Advances in Multimedia Modeling. MMM 2007. Lecture Notes in Computer Science, vol 4352. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69429-8_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69429-8_43

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69428-1

  • Online ISBN: 978-3-540-69429-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics