Abstract
We prove that there exists an O(log(n))-labeling scheme for every first-order formula with free set variables in every class of graphs that is nicely locally cwd-decomposable, which contains in particular, the nicely locally tree-decomposable classes. For every class of graphs of bounded expansion we prove that every bounded formula has an O(log(n))-labeling scheme. We also prove that every quantifier-free formula has an O(log(n))-labeling scheme in graphs of bounded arboricity. Some of these results are extended to counting queries.
Research supported by the project “Graph decompositions and Algorithms (GRAAL)” of “Agence Nationale pour la Recherche”.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bodlaender, H.L.: A Linear-Time Algorithm for Finding Tree-Decompositions of Small Tree-width. SIAM J. Comput. 25(6), 1305–1317 (1996)
Courcelle, B., Gavoille, C., Kanté, M.M., Twigg, A.: Optimal Labeling for Connectivity Checking in Planar Networks with Obstacles. (manuscript, 2008); An extended abstract will appear in Electronic Notes in Discrete Mathematics. In: Proceedings of the first Conference Topological and Geometric Graph Theory, Paris (2008)
Courcelle, B., Olariu, S.: Upper Bounds to the Clique-Width of Graphs. Discrete Applied Mathematics 101(1-3), 77–114 (2000)
Courcelle, B., Twigg, A.: Compact Forbidden-Set Routing. In: Thomas, W., Weil, P. (eds.) STACS 2007. LNCS, vol. 4393, pp. 37–48. Springer, Heidelberg (2007)
Courcelle, B., Vanicat, R.: Query Efficient Implementation of Graphs of Bounded Clique-Width. Discrete Applied Mathematics 131(1), 129–150 (2003)
Dawar, A., Grohe, M., Kreutzer, S.: Locally Excluding a Minor. In: 22nd IEEE Symposium on Logic in Computer Science (LICS), pp. 270–279. IEEE Computer Society, Los Alamitos (2007)
Durand, A., Grandjean, E.: First-Order Queries on Structures of Bounded Degree are Computable with Constant Delay. ACM Trans. Comput. Log 8(4) (2007)
Frick, M.: Generalized Model-Checking over Locally Tree-Decomposable Classes. Theory Comput. Syst. 37(1), 157–191 (2004)
Frick, M., Grohe, M.: Deciding First-Order Properties of Locally Tree-Decomposable Structures. J. ACM 48(1), 1184–1206 (2001)
Gaifman, H.: On Local and Non-Local Properties. In: Proceedings of the Herbrand Symposium Logic Colloquium 1981, pp. 105–135 (1982)
Grohe, M.: Logic, Graphs and Algorithms. In: Flum, Grädel, Wilke (eds.) Logic, Automata, History and Perspectives, pp. 357–422. Amsterdam University Press (2007)
Gavoille, C., Peleg, D.: Compact and Localized Distributed Data Structures. Distributed Computing 16(2-3), 111–120 (2003)
Hliněný, P., Oum, S.: Finding Branch-Decompositions and Rank-Decompositions. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS, vol. 4698, pp. 163–174. Springer, Heidelberg (2007)
Lozin, V.: Clique-Width of Unit Interval Graphs. arXiv:0709.1935 (manuscript, 2007)
Nešetřil, J., Ossona de Mendez, P.: Linear Time Low Tree-Width Partitions and Algorithmic Consequences. In: Kleinberg, J.M. (ed.) 38th Annual ACM Symposium on Theory of Computing (STOC), pp. 391–400. ACM, New York (2006)
Robertson, N., Seymour, P.: Graph Minors V: Excluding a Planar Graph. J. Combin. Theory Ser. B 41(1), 92–114 (1986)
Seese, D.: Linear Time Computable Problems and First-Order Descriptions. Mathematical Structures in Computer Science 6(6), 505–526 (1996)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Courcelle, B., Gavoille, C., Kanté, M.M. (2008). Efficient First-Order Model-Checking Using Short Labels. In: Preparata, F.P., Wu, X., Yin, J. (eds) Frontiers in Algorithmics. FAW 2008. Lecture Notes in Computer Science, vol 5059. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69311-6_18
Download citation
DOI: https://doi.org/10.1007/978-3-540-69311-6_18
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-69310-9
Online ISBN: 978-3-540-69311-6
eBook Packages: Computer ScienceComputer Science (R0)