[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Constraint Bipartite Vertex Cover Simpler Exact Algorithms and Implementations

  • Conference paper
Frontiers in Algorithmics (FAW 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5059))

Included in the following conference series:

  • 1471 Accesses

Abstract

constraint bipartite vertex cover is a graph-theoretical formalization of the spare allocation problem for reconfigurable arrays. We report on an implementation of a parameterized algorithm for this problem. This has led to considerable simplifications of the published, quite sophisticated algorithm. Moreover, we can prove that the mentioned algorithm could be quite efficient in practial situations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bai, G.: Ein eingeschränktes Knotenüberdeckungsproblem in bipartiten Graphen. Diplomarbeit, FB IV, Informatik, Universität Trier, Germany (2007)

    Google Scholar 

  2. Blough, D.M.: On the reconfiguration of memory arrays containing clustered faults. In: Fault Tolerant Computing, pp. 444–451. IEEE Press, Los Alamitos (1991)

    Google Scholar 

  3. Blough, D.M., Pelc, A.: A clustered failure model for the memory array reconfiguration problem. IEEE Transactions on Computers 42(5), 518–528 (1993)

    Article  Google Scholar 

  4. Chen, J., Kanj, I.A.: Constrained minimum vertex cover in bipartite graphs: complexity and parameterized algorithmics. Journal of Computer and System Sciences 67, 833–847 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  5. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1999)

    Google Scholar 

  6. Evans, R.C.: Testing repairable RAMs and mostly good memories. In: Proceedings of the IEEE Int’l Test Conf., pp. 49–55 (1981)

    Google Scholar 

  7. Fernau, H.: On parameterized enumeration. In: Ibarra, O.H., Zhang, L. (eds.) COCOON 2002. LNCS, vol. 2383, pp. 564–573. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  8. Fernau, H.: Parameterized Algorithmics: A Graph-Theoretic Approach, Habilitationsschrift, Universität Tübingen, Germany (2005)

    Google Scholar 

  9. Fernau, H., Niedermeier, R.: An efficient exact algorithm for constraint bipartite vertex cover. Journal of Algorithms 38(2), 374–410 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  10. Haddad, R.W., Dahbura, A.T., Sharma, A.B.: Increased throughput for the testing and repair of RAMs with redundancy. IEEE Transactions on Computers 40(2), 154–166 (1991)

    Article  MathSciNet  Google Scholar 

  11. Handa, K., Haruki, K.: A reconfiguration algorithm for memory arrays containing faulty spares. IEICE Trans. Fundamentals E83-A(6), 1123–1130 (2000)

    Google Scholar 

  12. Koren, I., Pradhan, D.K.: Modeling the effect of redundancy on yield and performance of VLSI systems. IEEE Transactions on Computers 36(3), 344–355 (1987)

    Article  Google Scholar 

  13. Kuo, S.-Y., Fuchs, W.K.: Efficient spare allocation for reconfigurable arrays. IEEE Design and Test 4, 24–31 (1987)

    Article  Google Scholar 

  14. Lin, H.-Y., Yeh, F.-M., Kuo, S.-Y.: An efficient algorithm for spare allocation problems. IEEE Transactions on Reliability 55(2), 369–378 (2006)

    Article  Google Scholar 

  15. Lombardi, F., Huang, W.K.: Approaches to the repair of VLSI/WSI PRAMs by row/column deletion. In: International Symposium on Fault-Tolerant Computing (FTCS 1988), pp. 342–347. IEEE Press, Los Alamitos (1988)

    Chapter  Google Scholar 

  16. Meyer, F.J., Pradhan, D.K.: Modeling defect spatial distribution. IEEE Transactions on Computers 38(4), 538–546 (1989)

    Article  Google Scholar 

  17. Shi, W., Fuchs, W.K.: Probabilistic analysis and algorithms for reconfiguration of memory arrays. IEEE Transactions on Computer-Aided Design 11(9), 1153–1160 (1992)

    Article  Google Scholar 

  18. Wang, J., Xu, X., Liu, Y.: An Exact Algorithm Based on Chain Implication for the Min-CVCB Problem. In: Dress, A.W.M., Xu, Y., Zhu, B. (eds.) COCOA. LNCS, vol. 4616, pp. 343–353. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Franco P. Preparata Xiaodong Wu Jianping Yin

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bai, G., Fernau, H. (2008). Constraint Bipartite Vertex Cover Simpler Exact Algorithms and Implementations. In: Preparata, F.P., Wu, X., Yin, J. (eds) Frontiers in Algorithmics. FAW 2008. Lecture Notes in Computer Science, vol 5059. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69311-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69311-6_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69310-9

  • Online ISBN: 978-3-540-69311-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics