Abstract
This paper deals with a blind deconvolution (DB) problem for multiple-input multiple-output infinite impulse response (MIMO-IIR) systems. To solve this problem, we propose an eigenvector algorithm (EVA). In the proposed EVA, two kinds of EVAs are merged so as to give a good performance: One is an EVA and the other is a Robust EVA (REVA) which works with as little sensitive to Gaussian noise as possible. Owing to this combination, two drawbacks of the conventional EVAs can be overcome. Simulation results show the validity of the proposed EVA.
Parts of the results in this paper were presented at IEEE Int. Conf. on Acoustics, Speech and Signal Processing, April 2007.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Adib, A., et al.: Source separation contrasts using a reference signal. IEEE Signal Processing Letters 11(3), 312–315 (2004)
Castella, M., et al.: Quadratic Higher-Order Criteria for Iterative Blind Separation of a MIMO Convolutive Mixture of Sources. IEEE Trans. Signal Processing 55(1), 218–232 (2007)
Inouye, Y.: Autoregressive model fitting for multichannel time series of degenerate rank: Limit properties. IEEE Trans. Circuits and Systems 32(3), 252–259 (1985)
Inouye, Y., Tanebe, K.: Super-exponential algorithms for multichannel blind deconvolution. IEEE Trans. Sig. Proc. 48(3), 881–888 (2000)
Jelonnek, B., Kammeyer, K.D.: A closed-form solution to blind equalization. Signal Processing 36(3), 251–259 (1994)
Jelonnek, B., Boss, D., Kammeyer, K.D.: Generalized eigenvector algorithm for blind equalization. Signal Processing 61(3), 237–264 (1997)
Kawamoto, M., et al.: Eigenvector algorithms using reference signals. In: Proc. ICASSP 2006, May 2006, vol. V, pp. 841–844 (2006)
Kawamoto, M., et al.: Eigenvector algorithms using reference signals for blind source separation of instantaneous mixtures. In: Proc. of ISCAS 2006, May 2006, pp. 4191–4194 (2006)
Kawamoto, M., et al.: Eigenvector algorithms for blind deconvolution of MIMO-IIR systems. In: Proc. ISCAS 2007, May 2007, pp. 3490–3493 (2007)
Kohno, K., et al.: Adaptive super-exponential algorithms for blind deconvolution of MIMO systems. In: Proc. ISCAS 2004, May 2004, vol. V, pp. 680–683 (2004)
Kohno, K., et al.: Super-Exponential Methods Incorporated with Higher-Order Correlations for Deflationary Blind Equalization of MIMO Linear Systems. In: Proc. ICA 2004, pp. 685–693 (2004)
Kohno, K., et al.: Robust super-exponential methods for blind equalization of MIMO-IIR systems. In: Proc. ICASSP 2006, vol. V, pp. 661–664 (2006)
Parra, L., Sajda, P.: Blind source separation via generalized eigenvalue decomposition. Journal of Machine Learning (4), 1261–1269 (2003)
Rhioui, S., et al.: Quadratic MIMO contrast functions for blind source separation in a convolutive context. In: Proc. ICA 2006, pp. 230–237 (2006)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kawamoto, M., Inouye, Y., Kohno, K. (2008). Blind Deconvolution of MIMO-IIR Systems: A Two-Stage EVA. In: Ishikawa, M., Doya, K., Miyamoto, H., Yamakawa, T. (eds) Neural Information Processing. ICONIP 2007. Lecture Notes in Computer Science, vol 4985. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69162-4_52
Download citation
DOI: https://doi.org/10.1007/978-3-540-69162-4_52
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-69159-4
Online ISBN: 978-3-540-69162-4
eBook Packages: Computer ScienceComputer Science (R0)