[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Blind Deconvolution of MIMO-IIR Systems: A Two-Stage EVA

  • Conference paper
Neural Information Processing (ICONIP 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4985))

Included in the following conference series:

  • 1538 Accesses

Abstract

This paper deals with a blind deconvolution (DB) problem for multiple-input multiple-output infinite impulse response (MIMO-IIR) systems. To solve this problem, we propose an eigenvector algorithm (EVA). In the proposed EVA, two kinds of EVAs are merged so as to give a good performance: One is an EVA and the other is a Robust EVA (REVA) which works with as little sensitive to Gaussian noise as possible. Owing to this combination, two drawbacks of the conventional EVAs can be overcome. Simulation results show the validity of the proposed EVA.

Parts of the results in this paper were presented at IEEE Int. Conf. on Acoustics, Speech and Signal Processing, April 2007.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 103.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Adib, A., et al.: Source separation contrasts using a reference signal. IEEE Signal Processing Letters 11(3), 312–315 (2004)

    Article  Google Scholar 

  2. Castella, M., et al.: Quadratic Higher-Order Criteria for Iterative Blind Separation of a MIMO Convolutive Mixture of Sources. IEEE Trans. Signal Processing 55(1), 218–232 (2007)

    Article  MathSciNet  Google Scholar 

  3. Inouye, Y.: Autoregressive model fitting for multichannel time series of degenerate rank: Limit properties. IEEE Trans. Circuits and Systems 32(3), 252–259 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  4. Inouye, Y., Tanebe, K.: Super-exponential algorithms for multichannel blind deconvolution. IEEE Trans. Sig. Proc. 48(3), 881–888 (2000)

    Article  MATH  Google Scholar 

  5. Jelonnek, B., Kammeyer, K.D.: A closed-form solution to blind equalization. Signal Processing 36(3), 251–259 (1994)

    Article  MATH  Google Scholar 

  6. Jelonnek, B., Boss, D., Kammeyer, K.D.: Generalized eigenvector algorithm for blind equalization. Signal Processing 61(3), 237–264 (1997)

    Article  MATH  Google Scholar 

  7. Kawamoto, M., et al.: Eigenvector algorithms using reference signals. In: Proc. ICASSP 2006, May 2006, vol. V, pp. 841–844 (2006)

    Google Scholar 

  8. Kawamoto, M., et al.: Eigenvector algorithms using reference signals for blind source separation of instantaneous mixtures. In: Proc. of ISCAS 2006, May 2006, pp. 4191–4194 (2006)

    Google Scholar 

  9. Kawamoto, M., et al.: Eigenvector algorithms for blind deconvolution of MIMO-IIR systems. In: Proc. ISCAS 2007, May 2007, pp. 3490–3493 (2007)

    Google Scholar 

  10. Kohno, K., et al.: Adaptive super-exponential algorithms for blind deconvolution of MIMO systems. In: Proc. ISCAS 2004, May 2004, vol. V, pp. 680–683 (2004)

    Google Scholar 

  11. Kohno, K., et al.: Super-Exponential Methods Incorporated with Higher-Order Correlations for Deflationary Blind Equalization of MIMO Linear Systems. In: Proc. ICA 2004, pp. 685–693 (2004)

    Google Scholar 

  12. Kohno, K., et al.: Robust super-exponential methods for blind equalization of MIMO-IIR systems. In: Proc. ICASSP 2006, vol. V, pp. 661–664 (2006)

    Google Scholar 

  13. Parra, L., Sajda, P.: Blind source separation via generalized eigenvalue decomposition. Journal of Machine Learning (4), 1261–1269 (2003)

    Google Scholar 

  14. Rhioui, S., et al.: Quadratic MIMO contrast functions for blind source separation in a convolutive context. In: Proc. ICA 2006, pp. 230–237 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Masumi Ishikawa Kenji Doya Hiroyuki Miyamoto Takeshi Yamakawa

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kawamoto, M., Inouye, Y., Kohno, K. (2008). Blind Deconvolution of MIMO-IIR Systems: A Two-Stage EVA. In: Ishikawa, M., Doya, K., Miyamoto, H., Yamakawa, T. (eds) Neural Information Processing. ICONIP 2007. Lecture Notes in Computer Science, vol 4985. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69162-4_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69162-4_52

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69159-4

  • Online ISBN: 978-3-540-69162-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics