[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Analog CMOS Circuits Implementing Neural Segmentation Model Based on Symmetric STDP Learning

  • Conference paper
Neural Information Processing (ICONIP 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4985))

Included in the following conference series:

Abstract

We proposed a neural segmentation model that is suitable for implementation in analog VLSIs using conventional CMOS technology. The model consists of neural oscillators mutually couple through synaptic connections. The model performs segmentation in temporal domain, which is equivalent to segmentation according to the spike timing difference of each neuron. Thus, the learning is governed by symmetric spike-timing dependent plasticity (STDP). We numerically demonstrate basic operations of the proposed model as well as fundamental circuit operations using a simulation program with integrated circuit emphasis (SPICE).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Han, S.K., Kim, W.S., Kook, H.: Temporal segmentation of the stochastic oscillator neural network. Physical Review E 58, 2325–2334 (1998)

    Google Scholar 

  2. von der Malsburg, Ch., Buhmann, J.: Sensory segmentation with coupled neural oscillators. Biological Cybernetics 67, 233–242 (1992)

    Article  MATH  Google Scholar 

  3. von der Malsburg, Ch., Schneider, W.: A neural cocktail-party processor. Biological Cybernetics 54, 29–40 (1986)

    Article  Google Scholar 

  4. Wang, D.L., Terman, D.: Locally excitatory globally inhibitory oscillator networks. IEEE Trans. on Neural Networks 6(1), 283–286 (1995)

    Article  MathSciNet  Google Scholar 

  5. Ando, H., Morie, T., Nagata, M., Iwata, A.: An Image Region Extraction LSI Based on a Merged/Mixed-Signal Nonlinear Oscillator Network Circuit. In: European Solid-State Circuits Conference (ESSCIRC 2002), Italy, September 2002, pp. 703–706 (2002)

    Google Scholar 

  6. Reichardt, W.: Principles of Sensory Communication, p. 303. Wiley, New York (1961)

    Google Scholar 

  7. Asai, T., Kanazawa, Y., Hirose, T., Amemiya, Y.: Analog reaction-diffusion chip imitating the Belousov-Zhabotinsky reaction with Hardware Oregonator Model. International Journal of Unconventional Computing 1(2), 123–147 (2005)

    Google Scholar 

  8. Tovar, G.M., Fukuda, S.E., Asai, T., Hirose, T., Amemiya, Y.: Neuromorphic CMOS circuits implementing a novel neural segmentation model based on symmetric STDP learning. In: 2007 International Joint Conference on Neural Networks, Florida, USA, August 12-17 (2007)

    Google Scholar 

  9. Asai, T., Ohtani, M., Yonezu, H.: Analog MOS circuits for motion detection based on correlation neural networks. Japanese Journal of Applied Physics 38(4B), 2256–2261 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Masumi Ishikawa Kenji Doya Hiroyuki Miyamoto Takeshi Yamakawa

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tovar, G.M., Fukuda, E.S., Asai, T., Hirose, T., Amemiya, Y. (2008). Analog CMOS Circuits Implementing Neural Segmentation Model Based on Symmetric STDP Learning. In: Ishikawa, M., Doya, K., Miyamoto, H., Yamakawa, T. (eds) Neural Information Processing. ICONIP 2007. Lecture Notes in Computer Science, vol 4985. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69162-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69162-4_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69159-4

  • Online ISBN: 978-3-540-69162-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics