[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Heuristic Search for Optimal Parameter Values of Three Biokinetic Growth Models for Describing Batch Cultivations of Streptococcus Pneumoniae in Bioreactors

  • Conference paper
New Frontiers in Applied Artificial Intelligence (IEA/AIE 2008)

Abstract

Simulated annealing (SA) is a stochastic search procedure which can lead to a reliable optimization method. This work describes a dynamic mathematical model for Streptococcus pneumoniae batch cultivations containing 8 unknown parameters, which were calibrated by a SA algorithm through the minimization of an evaluation function based on the performance of the model on real experimental data. Three kinetic expressions, the Monod, Moser and Tessier equations, commonly employed to describe microbial growth were tested in the model simulations. SA convergence was achieved after 13810 interactions (about 10 minutes of computing time) and the Tessier equation was identified as the kinetic expression which provided the best fit to the cultivation dataset used for parameter estimation. The model comprising the Tessier equation, estimated parameter values supplied by SA and mass balance equations was further validated by comparing the simulated results to 3 experimental datasets from new cultivations carried out in similar conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Moles, C.G., Mendes, P., Banga, J.R.: Parameter estimation in biochemical pathways: a comparison of global optimization methods. Genome Res. 13, 2467–2474 (2003)

    Article  Google Scholar 

  2. Bonilla-Petriciolet, A., Bravo-Snchez, U.I., Castillo-Borja, F., Zapiain-Salinas, J.G., Soto-Bernal, J.J.: The performance of simulated annealing parameter estimation for vapor-liquid equilibrium modeling. Br. J. of Chem. Eng. 24, 151–162 (2007)

    Google Scholar 

  3. Rodriguez-Fernandez, M., Mendes, P., Banga, J.R.: A hybrid approach for efficient and robust parameter estimation in biochemical pathways. BioSystems 83, 248–265 (2006)

    Article  Google Scholar 

  4. Gonçalves, V.M., Zangirolami, T.C., Giordano, R.L.C., Raw, I., Tanizaki, M.M., Giordano, R.C.: Optimization of medium and cultivation conditions for capsular polysaccharide production by Streptococcus pneumoniae serotype 23F. Appl. Microbiol. Biotechnol. 59, 713–717 (2002)

    Article  Google Scholar 

  5. Shuler, M.L., Kargi, F.: Bioprocess engineering: basic concepts. Prentice-Hall, Englewood Cliffs (2001)

    Google Scholar 

  6. Eilers, P.H.C.: A Perfect Smoother. Analytical Chemistry 75(14), 3631–3636 (2003)

    Article  Google Scholar 

  7. Nelder, J.A., Mead, R.: A simplex method for function minimization. Comput. Journal 7, 308–313 (1965)

    MATH  Google Scholar 

  8. Nelles, O.: Nonlinear system identification: from classical approaches to neural networks and fuzzy models. Springer, Germany (2001)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ngoc Thanh Nguyen Leszek Borzemski Adam Grzech Moonis Ali

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Montera, L., Horta, A.C.L., Zangirolami, T.C., do Carmo Nicoletti, M., Carmo, T.S., Gonçalves, V.M. (2008). A Heuristic Search for Optimal Parameter Values of Three Biokinetic Growth Models for Describing Batch Cultivations of Streptococcus Pneumoniae in Bioreactors. In: Nguyen, N.T., Borzemski, L., Grzech, A., Ali, M. (eds) New Frontiers in Applied Artificial Intelligence. IEA/AIE 2008. Lecture Notes in Computer Science(), vol 5027. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69052-8_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69052-8_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69045-0

  • Online ISBN: 978-3-540-69052-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics