[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Ranking Links on the Web: Search and Surf Engines

  • Conference paper
New Frontiers in Applied Artificial Intelligence (IEA/AIE 2008)

Abstract

The main algorithms at the heart of search engines have focused on ranking and classifying sites. This is appropriate when we know what we are looking for and want it directly. Alternatively, we surf, in which case ranking and classifying links becomes the focus. We address this problem using a latent semantic analysis of the web. This technique allows us to rate, suppress or create links giving us a version of the web suitable for surfing. Furthermore, we show on benchmark examples that the performance of search algorithms such as PageRank is substantially improved as they work on an appropriately weighted graph.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking: Bringing order to the web. Technical report, Stanford Digital Library Technologies Project (1998)

    Google Scholar 

  2. Kleinberg, J.: Authoritative sources in a hyperlinked environment. In: Proceedings of the 9th ACM-SIAM, SODA (1998)

    Google Scholar 

  3. Lempel, R., Moran, S.: The stochastic approach for link-structure analysis (SALSA) and the TKC effect. In: 9th International WWW Conference (2000)

    Google Scholar 

  4. Jeev, K., Lassez, J.-L.: Symbolic Stochastic Systems. AMCS, 321–328 (2004)

    Google Scholar 

  5. Berry, M.W., Browne, M.: Understanding Search Engines: Mathematical Modeling and Text Retrieval. SIAM, Philadelphia (2005)

    MATH  Google Scholar 

  6. Deerwester, S., Dumais, S., Landauer, T.K., Furnas, G., Harshman, R.: Indexing by latent semantic analysis. J. Amer. Soc. Info. Sci. 41, 391–407 (1990)

    Article  Google Scholar 

  7. Kumar, S.R., Raghavan, P., Rajagopalan, S., Tomkins, A.: Trawling emerging cybercommunities automatically. In: 8th International WWW Conference (1999)

    Google Scholar 

  8. Markov, A.A.: Rasprostranenie zakona bol’shih chisel na velichiny, zavisyaschie drug ot druga, Izvestiya Fiziko-matematicheskogo obschestva pri Kazanskom universitete, 2-ya seriya, tom 15, 9 4, 135-156 (1906)

    Google Scholar 

  9. Kirchhoff, G.: Über die Auflösung der Gleichungen, auf welche man bei der untersuchung der linearen verteilung galvanischer Ströme geführt wird. Ann. Phys. Chem. 72, 497–508 (1847)

    Article  Google Scholar 

  10. Langville, A., Meyer, C.: Google’s PageRank and Beyond: The science of search engine rankings. Princeton University Press, Princeton, New Jersey (2006)

    MATH  Google Scholar 

  11. Chandru, V., Lassez, J.-L.: Qualitative Theorem Proving in Linear Constraints, Theory and Practice, Verification, pp. 395–406 (2003)

    Google Scholar 

  12. Lassez, J.-L.: From LP to LP: Programming with Constraints. In: Ito, T., Meyer, A.R. (eds.) TACS 1991. LNCS, vol. 526, pp. 420–446. Springer, Heidelberg (1991)

    Google Scholar 

  13. Eckart, C., Young, G.: The approximation of one matrix by another of lower rank. Psychometrika 1, 211–218 (1936)

    Article  Google Scholar 

  14. Lassez, J.-L., Karadeniz, T., Mukkamala, S.: Zoomed Clusters. ICONIP, 824–830 (2006)

    Google Scholar 

  15. Tsaparas, P.: Using non-linear dynamical systems for web searching and ranking. Principles of Database Systems, 59–69 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ngoc Thanh Nguyen Leszek Borzemski Adam Grzech Moonis Ali

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lassez, JL., Rossi, R., Jeev, K. (2008). Ranking Links on the Web: Search and Surf Engines. In: Nguyen, N.T., Borzemski, L., Grzech, A., Ali, M. (eds) New Frontiers in Applied Artificial Intelligence. IEA/AIE 2008. Lecture Notes in Computer Science(), vol 5027. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69052-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69052-8_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69045-0

  • Online ISBN: 978-3-540-69052-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics