[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Can Pure Cutting Plane Algorithms Work?

  • Conference paper
Integer Programming and Combinatorial Optimization (IPCO 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5035))

Abstract

We discuss an implementation of the lexicographic version of Gomory’s fractional cutting plane method and of two heuristics mimicking the latter. In computational testing on a battery of MIPLIB problems we compare the performance of these variants with that of the standard Gomory algorithm, both in the single-cut and in the multi-cut (rounds of cuts) version, and show that they provide a radical improvement over the standard procedure. In particular, we report the exact solution of ILP instances from MIPLIB such as stein15, stein27, and bm23, for which the standard Gomory cutting plane algorithm is not able to close more than a tiny fraction of the integrality gap. We also offer an explanation for this surprizing phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arthur, J.L., Ravindran, A.: PAGP, a partitioning algorithm for (linear) goal programming problems. ACM Trans. Math. Softw. 6(3), 378–386 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  2. Balas, E., Ceria, S., Cornuéjols, G., Natraj, N.: Gomory cuts revisited. Operations Research Letters 19, 1–9 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  3. Balinski, M.L., Tucker, A.W.: Duality theory of linear programs: A constructive approach with applications. SIAM Review 11(3), 347–377 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  4. Borg, I., Groenen, P.J.F.: Modern Multidimensional Scaling: Theory and Applications. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  5. Balas, E., Saxena, A.: Optimizing over the split closure. Mathematical Programming (2006)

    Google Scholar 

  6. Fischetti, M., Lodi, A.: Optimizing over the first Chvátal closure. Mathematical Programming B 110(1), 3–20 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  7. Gomory, R.E.: Outline of an algorithm for integer solutions to linear programs. Bulletin of the American Society 64, 275–278 (1958)

    Article  MATH  MathSciNet  Google Scholar 

  8. Gomory, R.E.: An algorithm for the mixed integer problem. Technical Report RM-2597, The RAND Cooperation (1960)

    Google Scholar 

  9. Gomory, R.E.: An algorithm for integer solutions to linear programming. In: Graves, R.L., Wolfe, P. (eds.) Recent Advances in Mathematical Programming, pp. 269–302. McGraw-Hill, New York (1963)

    Google Scholar 

  10. Tamiz, M., Jones, D.F., El-Darzi, E.: A review of goal programming and its applications. Annals of Operations Research (1), 39–53 (1995)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Andrea Lodi Alessandro Panconesi Giovanni Rinaldi

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zanette, A., Fischetti, M., Balas, E. (2008). Can Pure Cutting Plane Algorithms Work?. In: Lodi, A., Panconesi, A., Rinaldi, G. (eds) Integer Programming and Combinatorial Optimization. IPCO 2008. Lecture Notes in Computer Science, vol 5035. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68891-4_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68891-4_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68886-0

  • Online ISBN: 978-3-540-68891-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics