Abstract
In this paper we study different coordination strategies for a group of robots involved in a search and rescue task. The system integrates all the necessary components to realise the basic behaviours of robotic platforms. Coordination is based on iterative dynamic task assignment. Tasks are interesting points to reach, and the coordination algorithm finds at each time step the optimal assignment of robots to tasks. We realised both a completely autonomous exploration strategy and a strategy that involves a human operator. The human operator is able to control the robots at different levels: giving priority points for exploration to the team of robots, giving navigation goal points to team of robots, and directly tele-operating a single robot. For building a consistent global map, we implemented a centralised coordinated SLAM approach that integrates readings from all robots. The system has been tested both in the UsarSim simulation environment and on robotic platforms.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Stachniss, C., Grisetti, G., Burgard, W.: Information gain-based exploration using rao-blackwellized particle filters. In: Proceedings of Robotics: Science and Systems (RSS), Cambridge, MA, USA (2005)
Yamauchi, B.: A frontier based approach for autonomous exploration. In: IEEE Int. Symp. on Computational Intelligence in Robotics and Automation (1997)
Zlot, R., Stenz, A., Dias, M.B., Thayer, S.: Multi robot exploration controlled by a market economy. In: Proc. of the Int. Conf. on Robotics and Automation (ICRA), pp. 3016–3023 (2002)
Schurr, N., Patil, P., Pighin, F., Tambe, M.: Using multiagent teams to improve the training of incident commanders. In: Proceedings of the Industry Track of the Fifth International Joint Conference on Autonomous Agents and Multiagent Systems (2006)
Scerri, P., Pynadath, D.V., Johnson, L.: A prototype infrastructure for distributed robot-agent-person teams. In: Proceedings of AAMAS (2003)
Wang, J., Lewis, M., Scerri, P.: Cooperating robots for search and rescue. In: Agent Technology for Disaster Management Workshop at AAMAS 2006 (2006)
Iocchi, L., Nardi, D., Piaggio, M., Sgorbissa, A.: Distributed coordination in heterogeneous multi-robot systems. Autonomous Robots 15(2), 155–168 (2003)
Grisetti, G., Stachniss, C., Burgard, W.: Improving grid-based SLAM with Rao-Blackwellized particle filters by adaptive proposals and selective resampling. In: Proceedings of the IEEE International Conference on Robotics & Automation (ICRA) (2005)
Farinelli, A., Grisetti, G., Iocchi, L.: Design and implementation of modular software for programming mobile robots. International Journal of Advanced Robotic Systems 3(1), 37–42 (2006)
Calisi, D., Farinelli, A., Iocchi, L., Nardi, D., Pucci, F.: Multi-objective autonomous exploration in a rescue environment. In: Proc. of IEEE Int. Workshop on Safety, Security and Rescue Robotics (SSRR), Gaithersburg, MD, USA (2006)
Calisi, D., Farinelli, A., Iocchi, L., Nardi, D.: Autonomous navigation and exploration in a rescue environment. In: Proc. of IEEE Int. Workshop on Safety, Security and Rescue Robotics (SSRR), Kobe, Japan, pp. 54–59 (2005) ISBN: 0-7803-8946-8
Carpin, S., Lewis, M., Wang, J., Balakirsky, S., Scrapper, C.: Bridging the gap between simulation and reality in urban search and rescue. In: Lakemeyer, G., Sklar, E., Sorrenti, D.G., Takahashi, T. (eds.) RoboCup 2006: Robot Soccer World Cup X. LNCS (LNAI), vol. 4434. Springer, Heidelberg (2007)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
La Cesa, S., Farinelli, A., Iocchi, L., Nardi, D., Sbarigia, M., Zaratti, M. (2008). Semi-autonomous Coordinated Exploration in Rescue Scenarios. In: Visser, U., Ribeiro, F., Ohashi, T., Dellaert, F. (eds) RoboCup 2007: Robot Soccer World Cup XI. RoboCup 2007. Lecture Notes in Computer Science(), vol 5001. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68847-1_27
Download citation
DOI: https://doi.org/10.1007/978-3-540-68847-1_27
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-68846-4
Online ISBN: 978-3-540-68847-1
eBook Packages: Computer ScienceComputer Science (R0)