Abstract
In this article we present an automatic on-line color calibration system that makes extensive use of the spatial relationships between color classes in the color space. First, we introduce the definition of class-relative color spaces, where classes are represented in terms of their spatial relation to a base color class. Then, using class-relative color spaces, the system is able to remap classes from the already trained ones, which gives a starting point for training the remaining classes. The color-calibrating system also uses a feedback from the detected objects using the remapped (or partially trained) classes. As a result, the system is able to generate a complete color look-up table from scratch, and to adapt quickly to severe lighting condition changes. A particularity of our system is that it does not need to solve the natural ambiguity in color classes’ intersections, but it is able to keep and use it during color segmentation using the concept of soft-colors.
This research was partially supported by FONDECYT (Chile) under Project Number 1061158.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Jüngel, M.: Using Layered Color Precision for a Self-Calibrating Vision System. In: Nardi, D., Riedmiller, M., Sammut, C., Santos-Victor, J. (eds.) RoboCup 2004. LNCS (LNAI), vol. 3276, pp. 209–220. Springer, Heidelberg (2005)
Heinemann, P., Sehnke, F., Streichert, F., Zell, A.: Towards a Calibration-Free Robot: The ACT Algorithm for Automatic Online Color Training. In: Lakemeyer, G., Sklar, E., Sorrenti, D.G., Takahashi, T. (eds.) RoboCup 2006: Robot Soccer World Cup X. LNCS (LNAI), vol. 4434. Springer, Heidelberg (2007)
Anzani, F., Bosisio, D., Matteucci, M., Sorrenti, D.: On-Line Color Calibration in Non-Stationary Environments. In: Bredenfeld, A., Jacoff, A., Noda, I., Takahashi, Y. (eds.) RoboCup 2005. LNCS (LNAI), vol. 4020, pp. 396–407. Springer, Heidelberg (2006)
Gönner, C., Rous, M., Kraiss, K.: Real-Time Adaptive Colour Segmentation for the RoboCup Middle Size League. In: Nardi, D., Riedmiller, M., Sammut, C., Santos-Victor, J. (eds.) RoboCup 2004. LNCS (LNAI), vol. 3276, pp. 402–409. Springer, Heidelberg (2005)
Bruce, J., Balch, T., Veloso, M.: Fast and Inexpensive Color Image Segmentation for Interactive Robots. In: Proceedings of the 2000 IEEE/RSJ International Conference on Inteligent Robots and Systems (IROS 2000), vol. 3, pp. 116–122 (2000)
Sridharan, M., Stone, P.: Towards Eliminating Manual Color Calibration at RoboCup. In: Bredenfeld, A., Jacoff, A., Noda, I., Takahashi, Y. (eds.) RoboCup 2005. LNCS (LNAI), vol. 4020, pp. 673–681. Springer, Heidelberg (2006)
Palma, R., Guerrero, P., Ruiz del Solar, J.: Context-Dependent Color Segmentation for AIBO Robots. In: 3rd IEEE Latin American Robotics Symposium – LARS 2006 (CD Proceedings), Santiago, Chile, October 26 - 27 (2006)
Tieu, K., Miller, E.: Unsupervised Color Constancy. Advances in Neural Information Processing Systems (2002)
Press, W., Teukolsky, S., Vetterling, W., Flannery, B.: Numerical Recipes in C, 2nd edn. Cambridge University Press (1992)
Iocchi, L.: Robust color segmentation through adaptive color distribution transformation. In: Lakemeyer, G., Sklar, E., Sorrenti, D.G., Takahashi, T. (eds.) RoboCup 2006: Robot Soccer World Cup X. LNCS (LNAI), vol. 4434, pp. 287–295. Springer, Heidelberg (2007)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Guerrero, P., Ruiz-del-Solar, J., Fredes, J., Palma-Amestoy, R. (2008). Automatic On-Line Color Calibration Using Class-Relative Color Spaces. In: Visser, U., Ribeiro, F., Ohashi, T., Dellaert, F. (eds) RoboCup 2007: Robot Soccer World Cup XI. RoboCup 2007. Lecture Notes in Computer Science(), vol 5001. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68847-1_22
Download citation
DOI: https://doi.org/10.1007/978-3-540-68847-1_22
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-68846-4
Online ISBN: 978-3-540-68847-1
eBook Packages: Computer ScienceComputer Science (R0)